Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this work, T-shaped mould design was used to generate hot spot and the effect of Sr and B on the hot tearing susceptibility of A356 was investigated. The die temperature was kept at 250o C and the pouring was carried out at 740o C. The amonut of Sr and B additions were 30 and 10 ppm, respectively. One of the most important defects that may exist in cast aluminium is the presence of bifilms. Bifilms can form by the surface turbulence of liquid metal. During such an action, two unbonded surfaces of oxides fold over each other which act as a crack. Therefore, this defect cause many problems in the cast part. In this work, it was found that bifilms have significant effect over the hot tearing of A356 alloy. When the alloy solidifies directionally, the structure consists of elongated dendritic structure. In the absence of equiaxed dendrites, the growing tips of the dendrites pushed the bifilms to open up and unravel. Thus, leading to enlarged surface of oxide to become more harmful. In this case, it was found that these bifilms initiate hot tearing.

Go to article

Authors and Affiliations

M. Uludağ
R. Çetin
D. Dışpınar
Download PDF Download RIS Download Bibtex

Abstract

A356 is one of the widely used aluminium casting alloy that has been used in both sand and die casting processes. Large amounts of scrap

metal can be generated from the runner systems and feeders. In addition, chips are generated in the machined parts. The surface area with

regard to weight of chips is so high that it makes these scraps difficult to melt. Although there are several techniques evolved to remedy

this problem, yet the problem lies in the quality of the recycled raw material. Since recycling of these scrap is quite important due to the

advantages like energy saving and cost reduction in the final product, in this work, the recycling efficiency and casting quality were

investigated. Three types of charges were prepared for casting: %100 primary ingot, %100 scrap aluminium and fifty-fifty scrap

aluminium and primary ingot mixture were used. Melt quality was determined by calculating bifilm index by using reduced pressure test.

Tensile test samples were produced by casting both from sand and die moulds. Relationship between bifilm index and tensile strength were

determined as an indication of correlation of melt quality. It was found that untreated chips decrease the casting quality significantly.

Therefore, prior to charging the chips into the furnace for melting, a series of cleaning processes has to be used in order to achieve good

quality products.

Go to article

Authors and Affiliations

C. Yuksel
O. Tamer
E. Erzi
U. Aybarc
E. Cubuklusu
O. Topcuoglu
M. Cigdem
D. Dispinar
Download PDF Download RIS Download Bibtex

Abstract

Recyclability is one of the great features of aluminium and its alloys. However, it has been typically considered that the secondary aluminium quality is low and bad. This is only because aluminium is so sensitive to turbulence. Uncontrolled transfer and handling of the liquid aluminium results in formation of double oxide defects known as bifilms. Bifilms are detrimental defects. They form porosity and deteriorate the properties. The detection and quantification of bifilms in liquid aluminium can be carried out by bifilm index measured in millimetres as an indication of melt cleanliness using Reduced Pressure Test (RPT). In this work, recycling efficiency and quality change of A356 alloy with various Ti additions have been investigated. The charge was recycled three times and change in bifilm index and bifilm number was evaluated. It was found that when high amount of Ti grain refiner was added, the melt quality was increased due to sedimentation of bifilms with Ti. When low amount of Ti is added, the melt quality was degraded.

Go to article

Authors and Affiliations

O. Gursoy
E. Erzi
K. Tur
D. Dispinar
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The solubility of Fe in aluminium alloys is known to be a problem in the casting of aluminium alloys. Due to the formation of various intermetallic phases, the mechanical properties decrease. Therefore, it is important to determine the formation mechanisms of such intermetallic. In this work, A360 alloy was used, and Fe additions were made. The alloy was cast into the sand and die moulds that consisted of three different thicknesses. In this way, the effect of the cooling rate was investigated. The holding time was selected to be 5 hours and every hour, a sample was collected from the melt for microstructural analysis. Additionally, the melt quality change was also examined by means of using a reduced pressure test where the bifilm index was measured. It was found that the iron content was increased after 2 hours of holding and the melt quality was decreased. There was a correlation between the duration and bifilm index. The size of Al-Si-Mn-Fe phases was increased in parallel with the bifilm content regardless of the iron content.
Go to article

Bibliography

[1] Bjurenstedt, A., Ghassemali, E., Seifeddine, S. & Dahle, A.K. (2019). The effect of Fe-rich intermetallics on crack initiation in cast aluminium: An in-situ tensile study. Materials Science and Engineering: A. 756, 502-507. DOI:10.1016/j.msea.2018.07.044
[2] Ferraro, S. & Timelli, G. (2015). Influence of sludge particles on the tensile properties of die-cast secondary aluminum alloys. Metallurgical and Materials Transactions B. 46(2), 1022-1034. DOI:10.1007/s11663-014-0260-3
[3] Ma, Z., Samuel, A., Samuel, F., Doty, H. & Valtierra, S. (2008). A study of tensile properties in Al–Si–Cu and Al–Si–Mg alloys: Effect of β-iron intermetallics and porosity. Materials Science and Engineering: A. 490(1-2), 36-51. https://doi.org/10.1016/j.msea.2008.01.028
[4] Zahedi, H., Emamy, M., Razaghian, A., Mahta, M., Campbell, J. & Tiryakioğlu, M. (2007). The effect of Fe-rich intermetallics on the Weibull distribution of tensile properties in a cast Al-5 pct Si-3 pct Cu-1 pct Fe-0.3 pct Mg alloy. Metallurgical and Materials Transactions A. 38(3), 659-670. DOI: 10.1007/s11661-006-9068-3
[5] Tunçay, T., Özyürek, D., Dişpinar, D. & Tekeli, S. (2020). The effects of Cr and Zr additives on the microstructure and mechanical properties of A356 alloy. Transactions of the Indian Institute of Metals. 73(5), 1273-1285. DOI: 10.1007/s12666-020-01970-4
[6] Gao, T., Hu, K., Wang, L., Zhang, B. & Liu, X. (2017). Morphological evolution and strengthening behavior of α-Al (Fe, Mn) Si in Al–6Si–2Fe–xMn alloys. Results in physics. 7, 1051-1054. https://doi.org/10.1016/j.rinp.2017.02.040
[7] Gorny, A., Manickaraj, J., Cai, Z. & Shankar, S. (2013). Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate. Journal of Alloys and Compounds. 577, 103-124. DOI: 10.1016/j.jallcom.2013. 04.139
[8] Taylor, J.A. (2012). Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Materials Science. 1, 19-33. https://doi.org/10.1016/j.mspro.2012.06.004
[9] Khalifa, W., Samuel, F. & Gruzleski, J. (2003). Iron intermetallic phases in the Al corner of the Al-Si-Fe system. Metallurgical and Materials Transactions A. 34(13), 807-825. DOI:10.1007/s11661-003-1009-9
[10] Liu, L., Mohamed, A., Samuel, A., Samuel, F., Doty, H. & Valtierra, S. (2009). Precipitation of β-Al5FeSi phase platelets in Al-Si based casting alloys. Metallurgical and Materials Transactions A. 40(10), 2457-2469. DOI:10.1007/s11661-009-9944-8
[11] Tupaj, M., Orłowicz, A., Mróz, M., Trytek, M. & Markowska, O. (2016). Usable properties of AlSi7Mg alloy after sodium or strontium modification. Archives of Foundry Engineering. 16(3), 129-132. DOI:10.1515/afe-2016-0064
[12] Dinnis, C.M., Taylor, J.A. & Dahle, A. (2006). Iron-related porosity in Al–Si–(Cu) foundry alloys. Materials Science and Engineering: A. 425(1-2), 286-296. DOI: 10.1016/j.msea.2006.03.045
[13] Mikołajczak, M. & Ratke, L. (2015). Three dimensional morphology of β-Al5FeSi intermetallics in AlSi alloys. Archives of Foundry Engineering. 15(1), 47-50. DOI:10.1515/afe-2015-0010
[14] Tunçay, T., Tekeli, S., Özyürek, D. & Dişpinar, D. (2017). Microstructure–bifilm interaction and its relation with mechanical properties in A356. International Journal of Cast Metals Research. 30(1), 20-29. https://doi.org/10.1080/13640461.2016.1192826
[15] Cao, X. & Campbell, J. (2000). Precipitation of primary intermetallic compounds in liquid Al 11.5 Si 0.4 Mg alloy. International Journal of Cast Metals Research. 13(3), 175-184. https://doi.org/10.1080/13640461.2000.11819400
[16] Cao, X. & Campbell, J. (2003). The nucleation of Fe-rich phases on oxide films in Al-11.5 Si-0.4 Mg cast alloys. Metallurgical and Materials Transactions A. 34(7), 409-1420.
[17] Cao, X. & Campbell, J. (2004). Effect of precipitation and sedimentation of primary α-Fe phase on liquid metal quality of cast Al–11.1 Si–0.4 Mg alloy. International Journal of Cast Metals Research. 17(1), 1-11. https://doi.org/10.1179/136404604225014792
[18] Cao, X. & Campbell, J. (2004). The solidification characteristics of Fe-rich intermetallics in Al-11.5 Si-0.4 Mg cast alloys. Metallurgical and Materials Transactions A. 35(5), 1425-1435. DOI:10.1007/s11661-004-0251-0
[19] Bjurenstedt, A., Casari, D., Seifeddine, S., Mathiesen, R.H. & Dahle, A.K. (2017). In-situ study of morphology and growth of primary α-Al (FeMnCr) Si intermetallics in an Al-Si alloy. Acta Materialia. 130, 1-9.
[20] Shabestari, S. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys. Materials Science and Engineering: A. 383(2), 289-298. https://doi.org/10.1016/j.msea.2004.06.022
[21] Ferraro, S., Fabrizi, A. & Timelli, G. (2015). Evolution of sludge particles in secondary die-cast aluminum alloys as function of Fe, Mn and Cr contents. Materials Chemistry and Physics. 153, 168-179. DOI:10.1016/j.matchemphys. 2014.12.050
[22] Dispinar D. & Campbell, J. (2014). Reduced pressure test (RPT) for bifilm assessment. In: Tiryakioğlu, M., Campbell, J., Byczynski, G. (eds) Shape Casting: 5th International Symposium 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-48130-2_30.
[23] Gyarmati G. et al., (2021). Controlled precipitation of intermetallic (Al, Si) 3Ti compound particles on double oxide films in liquid aluminum alloys. Materials Characterization. 181, 111467. https://doi.org/10.1016/j.matchar.2021.111467
[24] Podprocká, R., Malik, J. & Bolibruchová, D. (2015). Defects in high pressure die casting process. Manufacturing technology. 15(4), 674-678. DOI: 10.21062/ujep/x.2015/a/ 1213-2489/MT/15/4/674
[25] Samuel, A. Samuel, F. & Doty, H. (1996). Observations on the formation of β-Al5FeSi phase in 319 type Al-Si alloys. Journal of Materials Science. 31(20), 5529-5539. DOI:10.1080/13640461.2001.11819429
[26] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. DOI:10.1016/j.matchar. 2019.109925
[27] Liu, K., Cao, X. & Chen, X.-G. (2011). Solidification of iron-rich intermetallic phases in Al-4.5 Cu-0.3 Fe cast alloy. Metallurgical and Materials Transactions A. 42(7), 2004-2016. DOI: 10.1007/s11661-010-0578-7
Go to article

Authors and Affiliations

E.N. Bas
1
S. Alper
1
T. Tuncay
2
ORCID: ORCID
D. Dispinar
3
ORCID: ORCID
S. Kirtay
1
ORCID: ORCID

  1. Istanbul University-Cerrahpasa, Turkey
  2. Karabuk University, Turkey
  3. Foseco, Netherlands

This page uses 'cookies'. Learn more