Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents adaptation problem of lamellar/rod growth of eutectic. The transformation of eutectic microstructure was investigated systematically. A interpretation of the eutectic growth with theory minimum entropy production was presented.

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
Download PDF Download RIS Download Bibtex

Abstract

Coagulation and solidification of the copper droplets suspend in the liquid slag are usually accompanied by the appearance of the Cu-Cu2O eutectic. Locally, this eutectic is created in the stationary state. Therefore, frequently it has a directional morphology. Since the E = (Zn) + Zn16Ti – eutectic is similar in the asymmetry of the phase diagram to the Cu-Cu2O – eutectic, the (Zn) single crystal strengthened by the E = (Zn) + Zn16Ti precipitate is subjected to directional growth by the Bridgman’s system and current analysis. Experimentally, the strengthening layers (stripes) are generated periodically in the (Zn) – single crystal as a result of the cyclical course of precipitation which accompanies the directional solidification. These layers evince diversified eutectic morphologies like irregular rods, regular lamellae, and regular rods. The L – shape rods of the Zn16Ti – intermetallic compound appear within the first range of the growth rates when the irregular eutectic structure is formed. Next, the branched rods transform into regular rods and subsequently the regular rods into regular lamellae transitions can be recorded. The regular lamellae exist only within a certain range of growth rates. Finally, the regular rods re-appear at some elevated growth rates. The entropy production per unit time and unit volume is calculated for the regular eutectic growth. It will allow to formulate the entropy production per unit time for both eutectic structure: rod-like and lamellar one.

Go to article

Authors and Affiliations

W. Wołczyński
Download PDF Download RIS Download Bibtex

Abstract

The entropy production per unit time is calculated for the regular lamellae -, and for the regular rods formation, respectively. The entropy production is a function of some parameters which define the eutectic phase diagram, coefficient of the diffusion in the liquid, and some capillary parameters connected with the mechanical equilibrium located at the triple point of the solid/liquid interface. Minimization of the entropy production allowed to formulate mathematically the so-called Growth Law for both envisaged eutectic morphologies.

Go to article

Authors and Affiliations

W. Wołczyński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The (Zn) – single crystal strengthened by the E = (Zn) + Zn16Ti eutectic precipitate is subjected to directional growth by the Bridgman’s system and current analysis. Experimentally, the strengthening layers (stripes) are generated periodically in the (Zn) – single crystal as a result of the cyclical course of precipitation which accompanies the directional solidification. These layers evince diversified eutectic morphologies like irregular rods, regular lamellae, and regular rods. The L – shape rods of the Zn16Ti – intermetallic compound appear within the first range of the growth rates when the irregular eutectic structure is formed. Next, the branched rods transform into regular rods and subsequently the regular rods into regular lamellae transitions can be recorded. The regular lamellae exist only within a certain range of growth rates. Finally, the regular rods re-appear at some elevated growth rates.

A new solution to the diffusion equation is provided to describe the micro-field of the solute concentration in the liquid adjacent to the front of the growing eutectic structure. The solution is based on the mass balance in the considered system. Moreover, the existence of the protrusion of the leading eutectic phase over the wetting one is required by the mass balance. The appearance of the d – protrusion in the growing eutectic is well confirmed by the experimental observations of the frozen solid/liquid interface. The mentioned solution satisfies the concept of the eutectic coupled growth according to which undercooling of the leading phase is less than undercooling of the wetting eutectic phase. Also, the Ti – solute micro-segregation / redistribution is analyzed within the matrix of the single crystal. The micro-segregation is described as a result of the solution to the adequate, newly developed differential equation. The definition for the solute redistribution is given by the subsequently / separately formulated relationship. This definition takes into account both extent -, and intensity of the solute redistribution.

Finally, the entropy production is calculated for the regular lamellae -, and for the regular rods formation, respectively. The entropy production is a function of some parameters which define the eutectic phase diagram, coefficient of the diffusion in the liquid, and some capillary parameters connected with the mechanical equilibrium located at the triple point of the solid/liquid interface. Branches formation is related to the marginal stability. A new criterion is formulated and subjected to successful verification. It is: in the structural – thermodynamic competition the winner is this kind of the pattern for which minimum entropy production has a lower value.

Go to article

Authors and Affiliations

W. Wołczyński
ORCID: ORCID

This page uses 'cookies'. Learn more