Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 863
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

New types of models can help us better predict how well species will be able to adapt to climate change.
Go to article

Authors and Affiliations

Katarzyna Sękiewicz
1

  1. Department of Biogeography and SystematicsInstitute of Dendrology PAS in Kórnik
Download PDF Download RIS Download Bibtex

Abstract

In recent years adverse processes of suburbanization have been observed in cities. It has become a serious challenge for urban and transport planners, as it influences largely the quality of space, the quality of life, and the cost of running the city. This paper is dedicated to travel models in areas serviced by a railway system, and is based on a real-life survey example of the Błonie community, a district belonging to the Warsaw metropolitan area. Research carried out in 2014 focused on combined travels behaviors recorded using GPS locators as well as quantitative research (volumes of users across various transport systems).

Go to article

Authors and Affiliations

A. Brzeziński
K. Jesionkiewicz-Niedzińska
Download PDF Download RIS Download Bibtex

Abstract

Microscale combined heat and power (CHP) unit based on solid oxide fuel cells (SOFC) for distributed generation was analyzed. Operation principle is provided, and the technology development in recent years is briefly discussed. System baseline for numerical analysis under steady-state operation is given. Grid-connected unit, fuelled by biogas corresponds to potential market demand in Europe, therefore has been selected for analysis. Fuel processing method for particular application is described. Results of modeling performed in ASPEN Plus engineering software with certain assumptions are presented and discussed. Due to high system electrical efficiency exceeding 40%, and overall efficiency over 80%, technology is an example of highly competitive and sustainable energy generation unit.

Go to article

Authors and Affiliations

Jakub Kupecki
Krzysztof Badyda
Download PDF Download RIS Download Bibtex

Abstract

A mathematical model of a plane, steady state biofilm, with the use of a single substrate kinetics, was proposed. A set of differential equations was solved. In order to analyse the biofilm’s behaviour, a number of simulations were performed. The simulations included varying process parameters such as detachment coefficient and substrate loading. Two detachment models were taken into consideration: one describing the detachment ratio as proportional to the thickness of the biofilm, and the other one proportional to the thickness of the biofilm squared. The results provided information about substrate and live cell distribution in biofilm and the influence of certain parameters on biofilm behaviour.

Go to article

Authors and Affiliations

Stanisław Ledakowicz
Michał Blatkiewicz
Bolesław Tabiś
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a description of used methods and exemplary mathematical models which are classified into theoretical-empirical models of thermal processes. Such models encompass equations resulting from the laws of physics and additional empirical functions describing processes for which analytical models are complex and difficult to develop. The principle of developing, advantages and disadvantages of presented models as well as quality prediction assessment were presented. Mathematical models of a steam boiler, a steam turbine as well as a heat recovery steam generator were described. Exemplary calculation results were presented and compared with measurements.

Go to article

Authors and Affiliations

Henryk Rusinowski
Marcin Plis
Download PDF Download RIS Download Bibtex

Abstract

Hydrological modelling uses modern computational methods to simulate local and regional water circulation systems. How does this work, and what benefits does it bring?

Go to article

Authors and Affiliations

Monika Okońska
Download PDF Download RIS Download Bibtex

Abstract

It is shown that heat energy transfer from the source to the medium is accompanied by rheological transitions. Physical parameters of the medium change in the rheological transition zone due to heat energy flow transfer at a certain speed. It is shown that use of linear gradient laws during description of heat energy transfer processes leads to great differences between theoretical and experimental results, as well as the paradox of infinite spreading speed of disturbances of temperature fields. For mathematical description of heat energy transfer processes in mediums, it is proposed to use the method of irreversible rheological transitions and zero gradient, thus providing solutions of nonlinear differential equations in analytical form.
Go to article

Authors and Affiliations

Y. Stentsel
O. Porkuian
K. Litvinov
O. Shapovalov
Download PDF Download RIS Download Bibtex

Abstract

Superheater is for generating superheated steam from the saturated steam from the evaporator outlet. In the case of pulverized coal fired boiler, a relatively small amount of ash causes problems with ash fouling on the heating surfaces, including the superheaters. In the convection pass of the boiler, the flue gas temperature is lower and ash deposits can be loose or sintered. Ash fouling not only reduces heat transfer from the flue gas to the steam, but also is the cause of a higher pressure drop on the flue gas flow path. In the case the pressure drop is greater than the power consumed by the fan increases. If the superheater surfaces are covered with ash than the steam temperature at the outlet of the superheater stages falls, and the flow rates of the water injected into attemperator should be reduced. There is also an increase in flue gas temperature after the different stages of the superheater. Consequently, this leads to a reduction in boiler efficiency. The paper presents the results of computational fluid dynamics simulations of the first stage superheater of both the boiler OP-210M using the commercial software. The temperature distributions of the steam and flue gas along the way they flow together with temperature of the tube walls and temperature of the ash deposits will be determined. The calculated steam temperature is compared with measurement results. Knowledge of these temperatures is of great practical importance because it allows to choose the grade of steel for a given superheater stage. Using the developed model of the superheater to determine its degree of ash fouling in the on-line mode one can control the activation frequency of steam sootblowers.
Go to article

Authors and Affiliations

Marcin Trojan
Download PDF Download RIS Download Bibtex

Abstract

The paper presents dynamic model of hot water storage tank. The literature review has been made. Analysis of effects of nodalization on the prediction error of generalized finite element method (GFEM) is provided. The model takes into account eleven various parameters, such as: flue gases volumetric flow rate to the spiral, inlet water temperature, outlet water flow rate, etc. Boiler is also described by sizing parameters, nozzle parameters and heat loss including ambient temperature. The model has been validated on existing data. Adequate laboratory experiments were provided. The comparison between 1-, 5-, 10- and 50-zone boiler is presented. Comparison between experiment and simulations for different zone numbers of the boiler model is presented on the plots. The reason of differences between experiment and simulation is explained.
Go to article

Authors and Affiliations

Marcin Wołowicz
Jakub Kupecki
Katarzyna Wawryniuk
Jarosław Milewski
Konrad Motyliński
Download PDF Download RIS Download Bibtex

Abstract

Heat flow in heterogeneous media with complex microstructure follows tortuous path and therefore determination of temperature distribution in them is a challenging task. Two-scales, micro-macro model of heat conduction with phase change in such media was considered in the paper. A relation between temperature distribution on the microscopic level, i.e., on the level of details of microstructure, and the temperature distribution on the macroscopic level, i.e., on the level where the properties were homogenized and treated as effective, was derived. The expansion applied to this relation allowed to obtain its more simplified, approximate form corresponding to separation of micro- and macro-scales. Then the validity of this model was checked by performing calculations for 2D microstructure of a composite made of two constituents. The range of application of the proposed micro-macro model was considered in transient states of heat conduction both for the case when the phase change in the material is present and when it is absent. Variation of the effective thermal conductivity with time was considered and a criterion was found for which application of the considered model is justified.

Go to article

Authors and Affiliations

Mirosław Seredyński
Piotr Łapka
Piotr Furmański
Jerzy Banaszek
Download PDF Download RIS Download Bibtex

Abstract

Passive autocatalytic recombiners (PAR) is the only used method for hydrogen removal from the containment buildings in modern nuclear reactors. Numerical models of such devices, based on the CFD approach, are the subject of this paper. The models may be coupled with two types of computer codes: the lumped parameter codes, and the computational fluid dynamics codes. This work deals with 2D numerical model of PAR and its validation. Gaseous hydrogen may be generated in water nuclear reactor systems in a course of a severe accident with core overheating. Therefore, a risk of its uncontrolled combustion appears which may be destructive to the containment structure.

Go to article

Authors and Affiliations

Magdalena Orszulik
Adam Fic
Tomasz Bury
Jan Składzień
Download PDF Download RIS Download Bibtex

Abstract

To design breast ultrasound scanning systems or to test new imaging methods, various computer models are used to simulate the acoustic wave field propagation through a breast. The computer models vary in complexity depending on the applied approximations. The objective of this paper is to investigate how the applied approximations affect the resulting wave field. In particular, we investigate the importance of taking three-dimensional (3-D) spatial variations in the compressibility, volume density of mass, and attenuation into account. In addition, we compare four 3-D solution methods: a full-wave method, a Born approximation method, a parabolic approximation method, and a ray-based method. Results show that, for frequencies below 1 MHz, the amplitude of the fields scattering off the compressibility or density contrasts are at least 24 dB higher than the amplitude of the fields scattering off the attenuation contrasts. The results also show that considering only speed of sound as a contrast is a valid approximation. In addition, it is shown that the pressure field modeled with the full-wave method is more accurate than the fields modeled using the other three methods. Finally, the accuracy of the full-wave method is location independent whereas the accuracy of the other methods strongly depends on the point of observation.

Go to article

Authors and Affiliations

Taskin Ulas
Ozmen Neslihan
Hartmut Gemmeke
van Dongen Koen W.A.
Download PDF Download RIS Download Bibtex

Abstract

In generalized method of data reconciliation as equations of conditions beside substance and energy balances can be used equations which don’t have precisely the status of conservation lows. Empirical coefficients in these equations are traded as unknowns’ values. To this kind of equations, in application of the generalized method of data reconciliation in supercritical power unit, can be classified: steam flow capacity of a turbine for a group of stages, adiabatic internal efficiency of group of stages, equations for pressure drop in pipelines and equations for heat transfer in regeneration heat exchangers. Mathematical model of a power unit was developed in the code Thermoflex. Using this model the off-design calculation has been made in several points of loads for the power unit. Using these calculations identification of unknown values and empirical coefficients for generalized method of data reconciliation used in power unit has been made. Additional equations of conditions will be used in the generalized method of data reconciliation which will be used in optimization of measurement placement in redundant measurement system in power unit for new control systems

Go to article

Authors and Affiliations

Marcin Szega
Grzegorz Tadeusz Nowak
Download PDF Download RIS Download Bibtex

Abstract

An extension of the modified Jiles-Atherton description to include the effect of anisotropy is presented. Anisotropy is related to the value of the angular momentum quantum number J, which affects the form of the Brillouin function used to describe the anhysteretic magnetization. Moreover the shape of magnetization dependent R(m) function is influenced by the choice of the J value.
Go to article

Authors and Affiliations

Krzysztof Chwastek
Jan Szczygłowski
Download PDF Download RIS Download Bibtex

Abstract

A temperature dependent model is necessary for the generation of hysteresis loops of ferromagnetic materials. In this study, a physical model based on the Jiles-Atherton model has been developed to study the effect of temperature on the magnetic hysteresis loop. The thermal effects were included through a model of behavior depending on the temperature parameters Ms and k of the Jiles-Atherton model. The temperaturedependent Jiles-Atherton model was validated through measurements made on ferrite material (3F3). The results have been found to be in good agreement with the model.

Go to article

Authors and Affiliations

A. Ladjimi
M. Mékideche
A. Babouri
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a self-excited induction generator model with saturation effect for power generating mode in a remote site. The model is led through the space vector mathematical formalism and allows one to analyze the steady and dynamic states. It is developed for a squirrel cage induction machine. This model provides magnetizing inductance variation able to influence the build-up and the stabilization of voltage generation when the load changes. The final result is a realistic approach model which takes into con- sideration the dependency of the magnetizing inductance versus magnetizing current. This novel model is validated through experimental measurements to demonstrate its validity and practicability.

Go to article

Authors and Affiliations

Ezzeddine Touti
Habib Kraim
Remus Pusca
Raphael Romary
Download PDF Download RIS Download Bibtex

Abstract

The new efficient method of modeling and thermodynamic analysis of power engineering systems has been presented. With its help a comparison of different structures and investigation of the influence of a particular constituent process onto the whole system efficiency is possible. The shaft work or the exergy is the main thermodynamic quantity taken into account in analyses, and the appropriate dimensionless modeling parameter has been introduced.

Go to article

Authors and Affiliations

Jarosław Kozaczka
Pavel Kolat
Download PDF Download RIS Download Bibtex

Abstract

In this study, batch fermentation of glucose to ethanol by Saccharomyces cerevisiae (ATCC 7754) was carried out using 2.5 dm3 BioFlo®115 bioreactor. The main objective of this study was to investigate the kinetics of ethanol fermentation by means of the non-structured model. The fermentation process was carried out for 72 h. Samples were collected every 4 h and then yeast growth concentration of ethanol and glucose were measured. The mathematical model was composed of three equations, which represented the changes of biomass, substrate and ethanol concentrations. The mathematical model of bioprocess was solved by means of Matlab/SimulinkTM environment. The obtained results from the proposed model showed good agreement with the experimental data, thus it was concluded that this model can be used for the mathematical modeling of ethanol production.

Go to article

Authors and Affiliations

Anna Konopacka
Maciej Konopacki
Marian Kordas
Rafał Rakoczy
Download PDF Download RIS Download Bibtex

Abstract

The article presents the procedure for how to establish a mathematical model of nitrogen oxides formation based on the theory of dimensional analysis. The model is based on selected physical quantities (parameters) measurable during regular operation of a heat generation plant. The objective of using dimensional analysis to describe nitrogen oxides formation is to show that between operating parameters of the combustion equipment and the NOx formation there is a significant correlation.

The obtained results, which are further described in this article, have proved this fact. The obtained formula expressing nitrogen oxides formation, based on dimensional analysis, applies universally to any boiler fuelled by coal, gas or biomass. However, it is necessary to find C, m, n constants for the formula by experiment, individually for each type of boiler and used fuel. The experiment is based on on-line measurements of selected operational parameters for a given boiler, combusting a certain type of fuel with its actual moisture content and calorific value. The methodology, described in this article, helps to find relationships between the operational parameters and the formation of NOx emissions for a particular furnace. The developed mathematical model has been validated with boilers fuelled by black coal and biomass. Both the results obtained from direct measurements of NOx in both types of boilers, and the results obtained by calculation using equation based on the dimensional analysis, are in a very good accord. When burning coal, the variation between NOx expression from the model and the on-line measurements ranges between -12.23 % and + 9.92 %, and for burning biomass between -0.54 % and 0.48 %.

The intention of the authors is to inform the professional community about the suitability of the dimensional analysis to describe any phenomena for which there is currently no exact mathematical formulation based on differential equations or empirical formulas. Many other examples of dimensional analysis applications in practice may be found in the work of Čarnogurská and Příhoda (2011).

Go to article

Authors and Affiliations

Mária Čarnogurská
Miroslav Příhoda
Tomáš Brestovič
Download PDF Download RIS Download Bibtex

Abstract

The objective of the work are in-depth experimental studies of Cu(II) and Zn(II) ion removal on chitosan gel beads from both one- and two-component water solutions at the temperature of 303 K. The optimal process conditions such as: pH value, dose of sorbent and contact time were determined. Based on the optimal process conditions, equilibrium and kinetic studies were carried out. The maximum sorption capacities equaled: 191.25 mg/g and 142.88 mg/g for Cu(II) and Zn(II) ions respectively, when the sorbent dose was 10 g/L and the pH of a solution was 5.0 for both heavy metal ions. One-component sorption equilibrium data were successfully presented for six of the most useful three-parameter equilibrium models: Langmuir-Freundlich, Redlich-Peterson, Sips, Koble-Corrigan, Hill and Toth. Extended forms of Langmuir-Freundlich, Koble-Corrigan and Sips models were also well fitted to the two-component equilibrium data obtained for different ratios of concentrations of Cu(II) and Zn(II) ions (1:1, 1:2, 2:1). Experimental sorption data were described by two kinetic models of the pseudo-first and pseudo-second order. Furthermore, an attempt to explain the mechanisms of the divalent metal ion sorption process on chitosan gel beads was undertaken.

Go to article

Authors and Affiliations

Józef Nastaj
Małgorzata Tuligłowicz
Konrad Witkiewicz
Download PDF Download RIS Download Bibtex

Abstract

In order to assess the influence of hydrodynamic effects on the recovery of n-butanol by means of pervaporation, a commercial PERVAP 4060 membrane was investigated. Laboratory pervaporation experiments were carried out providing a comparison of the permeation fluxes and enrichment factors. While the enrichment factors achieved in both modules under the same process conditions were comparable, the permeation fluxes differed from each other. In order to explain the observed differences, hydrodynamic conditions in the membrane module were examined by means of CFD simulation performed with ANSYS Fluent 14.5 software. Two different modules having membrane diameters of 80 mm and 150 mm were analyzed. As a result, different velocity profiles were obtained, which served to estimate the mass transfer coefficients of butanol, ethanol and acetone.
Go to article

Authors and Affiliations

Joanna Marszałek
Michał Tylman
Paulina Rdzanek
Władysław Kamiński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of overvoltages caused by a direct lightning strike in intrusion detection system equipped with underground radiating cable sensors. Waveforms of currents and voltages in the system components are calculated using analytical formulas basing on a transmission-line model in the frequency domain. The time-domain waveforms are computed using the inverse fast Fourier transform (IFFT). Three network configurations of the intrusion detection system are analyzed.

Go to article

Authors and Affiliations

K. Aniserowicz
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the authors describe and solve the problem of optimum control of selected vibration forms in mechanical systems. Two illustrative examples have been used to present the procedure for determination of the optimum controller coefficients.

In the first example, a simplified mechanical system is considered, while in the second one – a rotor with magnetic bearing. In both cases, the integral performance indices have been defined in order to minimize the vibration level at selected points of the structures.

The system with the magnetic bearing is structurally unstable. For this reason, the authors present the way of finding the weight coefficients of integral performance index for unstable, multi-degrees-of-freedom system. In that way, the selected modal forms attain the previously assumed dynamic properties and the performance index takes the minimum value. The results of numerical analysis show that the proposed way is efficient and makes it possible to control selected forms of vibration in the system.

Go to article

Authors and Affiliations

Edmund Wittbrodt
Rafał Hein
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the authors consider the influence of axial load on the stability of shells of revolution subjected to external pressure. Shells of different geometry are investigated with emphasis to barrelled shells. The variable quantities are length L and meridional radius of curvature R1 of a shell. The constant parameters are: thickness of the shell h, mass ms and reference radius r0. The material of shells is steel. Numerical calculations were performed in the ABAQUS system. All the shells considered in this paper were subjected to axial compression to determine the force corresponding to the loss of stability in such conditions. A part of this force is then used to preload shell before the buckling analysis in the conditions of external pressure is started. The buckling shapes for shells of different geometry are presented with and without the influence of axial load. The ability of controlling the buckling strength and shape is discussed.

Go to article

Authors and Affiliations

Paweł Jasion
Krzysztof Magnucki

This page uses 'cookies'. Learn more