Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 54
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article presents values of porosity and compression strength of hard coals from the area of the Upper Silesian Coal Basin. The change of the stage of carbonification, which results from conversion of coal substance in the process of coalification, is a source of many changes in the structure of coal. These changes exert influence on values of physical parameters, including the values of porosity and strength. Porosity and compression strength change with the degree of carbonification, a result of the depth of deposition. This study determined the values of effective porosity of coals and their strength considering the age chronology of coal seams and the depth of their occurrence. It examined coals of the Cracow Sandstone Series, the Mudstone Series, the Upper Silesian Sandstone Series, and the Paralic Series from depths ranging from about 350 m to 1200 m. The authors have shown that effective porosity of the Upper Silesian coals changes for particular stratigraphic groups and assumes values from a few to a dozen or so per cent, while compression strength from several to several dozen megapascals. It has been observed, from a chronostratigraphic perspective, that there is a shifting of the upper and lower limits of intervals of porosity variations towards higher values for younger coals. With the increase in compression strength, value of porosity in particular stratigraphic groups generally decreases. However, no regular changes were observed in mean, uniaxial compressive strength with the increase in the age of subsequent stratigraphic groups. On the other hand, for bright coal and semi-bright coal, a visible decrease in compression strength with the depth of deposition of strata was observed.

Go to article

Authors and Affiliations

Mirosława Bukowska
ORCID: ORCID
Urszula Sanetra
Mariusz Wadas
Download PDF Download RIS Download Bibtex

Abstract

In the paper, on the basis of our studies and the available literature data, a model of changes in the number of active centers corresponding to the structure of the reactive coal particle has been developed. A new distribution function that links the specific surface area of a particle with its porosity and reaction degree has been proposed. An equation for estimation of changes in this parameter during the reaction, on the basis of the initial value, has been presented. In the range of our data and the analysis of the literature data, the model, with satisfactory accuracy, describes internal structural changes of coal and coal char particles. The present results may constitute a basis for complex modelling of coal conversion processes.

Based on the results it was found that the total active centres are related to the internal surface area and porosity of the particle. For a specific coal type, this value depends on the porosity, true density and size of the particle. Changes in total active centres, when these structural properties during thermal conversion of coal are considered, are described in equations.

Go to article

Authors and Affiliations

Stanisław Gil
Piotr Mocek
Wojciech Bialik
Download PDF Download RIS Download Bibtex

Abstract

Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si aluminum alloys. For experiment was used Pure aluminum and four alloys: AlSi6Cu4, AlSi7Mg0, 3, AlSi9Cu1, AlSi10MgCu1.

Go to article

Authors and Affiliations

L. Kucharčík
A. Sládek
M. Brůna
Download PDF Download RIS Download Bibtex

Abstract

The aim of the hereby paper is to present the developed model of determining the volume and surface porosity based on the main fraction

of polifractional materials, its experimental verification and utilisation for the interpretation of effects accompanying the formation of a

moulding sand apparent density, porosity and permeability in the blowing processes of the core and moulds technology.

Go to article

Authors and Affiliations

R. Dańko
J. Dańko
Download PDF Download RIS Download Bibtex

Abstract

The objective of the presented paper is to investigate the performance of concrete containing volcanic scoria as cement replacement after 7, 28, 90, and 180 days curing. Five performance indicators have been studied. Compressive strength, water permeability, porosity, chloride penetrability, and reinforcement corrosion resistance have all been evaluated. Concrete specimens were produced with replacement levels ranging from 10 to 35%. Test results revealed that curing time had a large influence on all the examined performance indicators of scoria-based concrete. Water permeability, porosity, and chloride penetrability of scoria-based concrete mixes were much lower than that of plain concrete. Concretes produced with scoria-based binders also decelerated rebar corrosion, particularly after longer curing times. Furthermore, an estimation equation has been developed by the authors to predict the studied performance indicators, focusing on the curing time and the replacement level of volcanic scoria. SEM/EDX analysis has been reported as well.

Go to article

Authors and Affiliations

A. M. al-Swaidani
Download PDF Download RIS Download Bibtex

Abstract

Casting is the most economical way of producing parts for many industries ranging from automotive, aerospace to construction towards small appliances in many shares. One of the challenges is the achievement of defect-free cast parts. There are many ways to do this which starts with calculation and design of proper runner system with correct size and number of feeders. The first rule suggests starting with clean melt. Yet, rejected parts can still be found. Although depending on the requirement from the parts, some defects can be tolerated, but in critical applications, it is crucial that no defect should exist that would deteriorate the performance of the part. Several methods exist on the foundry floor to detect these defects. Functional safety criteria, for example, are a must for today's automotive industry. These are not compromised under any circumstances. In this study, based on the D-FMEA (Design Failure Mode and Effect Analysis) study of a functional safety criterion against fuel leakage, one 1.4308 cast steel function block, which brazed-on fuel rail port in fuel injection unit, was investigated. Porosity, buckling, inclusion and detection for leak were carried out by non-destructive test (NDT) methods. It was found that the best practice was the CT-Scan (Computed Tomography) for such applications.
Go to article

Bibliography

[1] Stefanescu, D.M. (2005). Computer simulation of shrinkage related defects in metal castings–a review. International Journal of Cast Metals Research. 18(3), 129-143.
[2] Kweon, E.S., Roh, D.H., Kim, S.B. & Stefanescu, D.M. (2020). Computational modeling of shrinkage porosity formation in spheroidal graphite iron: a proof of concept and experimental validation. International Journal of Metalcasting. 14, 601-609.
[3] Campbell, J. (2015). Complete casting handbook: metal casting processes, metallurgy, techniques and design. Butterworth-Heinemann.
[4] Duckers, (2015). AISI Materials Content Analysis: Final Report.
[5] Meola, C., Squillace, A., Minutolo, F.M.C. & Morace, R.E. (2004). Analysis of stainless steel welded joints: a comparison between destructive and non-destructive techniques. Journal of Materials Processing Technology. 155, 1893-1899.
[6] Menzies I. & Koshy, P. (2009). In-process detection of surface porosity in machined castings. International Journal of Machine Tools and Manufacture. 49(6), 530-535.
[7] Ushakov, V.M., Davydov, D.M. & Domozhirov, L.I. (2011). Detection and measurement of surface cracks by the ultrasonic method for evaluating fatigue failure of metals. Russian Journal of Nondestructive Testing. 47(9), 631-641.
[8] Vazdirvanidis, A., Pantazopoulos, G. & Louvaris, A. (2009). Failure analysis of a hardened and tempered structural steel (42CrMo4) bar for automotive applications. Engineering Failure Analysis. 16(4), 1033-1038.
[9] Gupta, R.K., Ramkumar, P. & Ghosh, B.R. (2006). Investigation of internal cracks in aluminium alloy AA7075 forging. Engineering Failure Analysis. 13(1), 1-8.
[10] Smokvina Hanza S. & Dabo, D. (2017). Characterization of cast iron using ultrasonic testing, HDKBR INFO Mag. 7(1), 3-7.
[11] Krautkrämer, J. & Krautkrämer, H. (1990). Ultrasonic Testing of Materials” Springer-Verlag.
[12] Ziółkowski, G., Chlebus, E., Szymczyk, P. & Kurzac, J. (2014). Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology. Archives of Civil and Mechanical Engineering. 14(4), 608-614.
[13] A. du Plessis, A., le Roux, S.G. & Guelpa, A. (2016). Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Studies in Nondestructive Testing and Evaluation. 6(A), 17-25.
[14] Kurz, J.H., Jüngert, A., Dugan, S., Dobmann, G. & Boller, C. (2013). Reliability considerations of NDT by probability of detection (POD) determination using ultrasound phased array. Engineering Failure Analysis. 35, 609-617.
[15] Sika, R., Rogalewicz, M., Kroma, A. & Ignaszak, Z. (2020). Open atlas of defects as a supporting knowledge base for cast iron defects analysis. Archives of Foundry Engineering. 20(1), 55-60.

Go to article

Authors and Affiliations

K.C. Dizdar
1
ORCID: ORCID
H. Sahin
1
ORCID: ORCID
M. Ardicli
2
D. Dispinar
3
ORCID: ORCID

  1. Istanbul Technical University, Turkey
  2. Bosch Powertrain Solutions, Bursa, Turkey
  3. Foseco Non-Ferrous Metal Treatment, Netherlands
Download PDF Download RIS Download Bibtex

Abstract

This paper describes preparation methodology and research results of newly developed materials from post-production fibrous waste that are resistant to high temperatures. Widely available raw materials were used for this purpose. Such approach has significant impact on the technological feasibility and preparation costs. Obtained materials were verified via applying of various tests including characterization of shrinkage, porosity, density and water absorption as well as X-ray analysis (XRD), followed by mechanical bending and compressive strength determination.

Based on the research results, the possible applications of materials as thermal insulators were indicated.

Go to article

Authors and Affiliations

K. Kogut
K. Kasprzyk
R. Kłoś
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the validation process of a certain method of balancing gas contained in the pore space of rocks. The validation was based upon juxtaposition of the examination of rocks’ porosity and the effects of comminution in terms of assessing the possibility of opening the pore space. The tests were carried out for six dolomite samples taken from different areas of the ‘Polkowice-Sieroszowice’ copper mine in Poland. Prior to the grinding process, the rocks’ porosity fell in the range of 0.3-14.8%, while the volume of the open pores was included in the 0.01-0.06 cm3/g range. The grinding process was performed using an original device – the GPR analyzer. The SEM analysis revealed pores of various size and shape on the surface of the rock cores, while at the same time demonstrating lack of pores following the grinding process. The grain size distribution curves were compared with the cumulative pore volume curves of the cores before grinding. In order to confirm the argument put forward in this paper – i.e. that comminution of a rock to grains of a size comparable with the size of the rock’s pores results in the release of gas contained in the pore space – the amount of gas released as a result of the comminution process was studied. The results of gas balancing demonstrated that the pore space of the investigated dolomites was filled with gas in amounts from 3.19 cm3/kg to 45.86 cm3/kg. The obtained results of the rock material comminution to grains comparable – in terms of size – to the size of the pores of investigated rocks, along with asserting the presence of gas in the pore space of the studied dolomites, were regarded as a proof that the method of balancing gas in rocks via rock comminution is correct.

Go to article

Authors and Affiliations

Mateusz Kudasik
Anna Pajdak
ORCID: ORCID
Norbert Skoczylas
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The study investigates the effect of Portland cement and ground granulated blast furnace slag (GGBFS) added in changed proportions as stabilising agents on soil parameters: uniaxial compressive strength (UCS), Proctor compactness and permeability. The material included dredged clayey silts collected from the coasts of Timrå, Östrand. Soil samples were treated by different ratio of the stabilising agents and water and tested for properties. Study aimed at estimating variations of permeability, UCS and compaction of soil by changed ratio of binders. Permeability tests were performed on soil with varied stabilising agents in ratio H WL B (high water / low binder) with ratio 70/30%, 50/50%, and 30/70%. The highest level of permeability was achieved by ratio 70/30% of cement/slag, while the lowest - by 30/70%. Proctor compaction was assessed on a mixture of ash and green liquor sludge, to determine optimal moisture content for the most dense soil. The maximal dry density at 1.12 g/cm 3 was obtained by 38.75% of water in a binder. Shear strength and P-wave velocity were measured using ISO/TS17892-7 and visualised as a function of UCS. The results showed varying permeability and UCS of soil stabilised by changed ratio of CEM II/GGBS.
Go to article

Bibliography

[1] J.-M. Bian and B.-T. Wang. Study on shear strength of unsaturated soils based on the saturated soils. In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), pages 2656–2659, 2011. doi: 10.1109/ICETCE.2011.5775686.
[2] J. Jin. Research of soil compactness tested by instant vibration method. In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), pages 585–588, 2011. doi: 10.1109/ICETCE.2011.5774579.
[3] J. Wu, G. Yang, X. Wang, and W. Li. PZT-based soil compactness measuring sheet using electromechanical impedance. IEEE Sensors Journal, 20(17):10240–10250, 2020. doi: 10.1109/JSEN.2020.2991580.
[4] X. Wang, X. Dong, Z. Zhang, J. Zhang, G. Ma, and X. Yang. Compaction quality evaluation of subgrade based on soil characteristics assessment using machine learning. Transportation Geotechnics, 32:100703, 2022. doi: 10.1016/j.trgeo.2021.100703.
[5] Z. Gao and J. Chai. Method for predicting unsaturated permeability using basic soil properties. Transportation Geotechnics, 34:100754, 2022. doi: 10.1016/j.trgeo.2022.100754.
[6] C.E. Choong, K T.Wong, S.B. Jang, J.-Y. Song, S.-G. An, C.-W. Kang, Y. Yoon, and M. Jang. Soil permeability enhancement using pneumatic fracturing coupled by vacuum extraction for in-situ remediation: Pilot-scale tests with an artificial neural network model. Journal of Environmental Chemical Engineering, 10(1):107075, 2022. doi: 10.1016/j.jece.2021.107075.
[7] L. Pohl, A. Kölbl, D. Uteau, S. Peth, W. Häusler, L. Mosley, P. Marschner, R. Fitzpatrick, and I. Kögel-Knabner. Porosity and organic matter distribution in jarositic phyto tubules of sulfuric soils assessed by combined μCT and NanoSIMS analysis. Geoderma, 399:115124, 2021. doi: 10.1016/j.geoderma.2021.115124.
[8] W. Zhang, R. Bai, X. Xu, and W. Liu. An evaluation of soil thermal conductivity models based on the porosity and degree of saturation and a proposal of a new improved model. International Communications in Heat and Mass Transfer, 129:105738, 2021. doi: 10.1016/j.icheatmasstransfer.2021.105738.
[9] F.R.A. Ziegler-Rivera, B. Prado, A. Gastelum-Strozzi, J. Márquez, L. Mora, A. Robles, and B. González. Computed tomography assessment of soil and sediment porosity modifications from exposure to an acid copper sulfate solution. Journal of South American Earth Sciences, 108:103194, 2021. doi: 10.1016/j.jsames.2021.103194.
[10] B.C. Ball. Pore characteristics of soils from two cultivation experiments as shown by gas diffusivities and permeabilities and air-filled porosities. European Journal of Soil Science, 32(4):483–498, 1981. doi: 10.1111/j.1365-2389.1981.tb01724.x.
[11] S. Deviren Saygin, F. Arı, Ç. Temiz, S. Arslan, M.A. Ünal, and G. Erpul. Analysis of soil cohesion by fluidized bed methodology using integrable differential pressure sensors for a wide range of soil textures. Computers and Electronics in Agriculture, 191:106525, 2021. doi: 10.1016/j.compag.2021.106525.
[12] Y. Kim, A. Satyanaga, H. Rahardjo, H. Park, and A.W.L. Sham. Estimation of effective cohesion using artificial neural networks based on index soil properties: A Singapore case. Engineering Geology, 289:106163, 2021. doi: 10.1016/j.enggeo.2021.106163.
[13] V. Marzulli, C.S. Sandeep, K. Senetakis, F. Cafaro, and T. Pöschel. Scale and water effects on the friction angles of two granular soils with different roughness. Powder Technology, 377:813–826, 2021. doi: 10.1016/j.powtec.2020.09.060.
[14] J. Zou, G. Chen, and Z. Qian. Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models. Computers and Geotechnics, 106:1–17, 2019. doi: 10.1016/j.compgeo.2018.10.014.
[15] A. Kaya. Relating equal smectite content and basal spacing to the residual friction angle of soils. Engineering Geology, 108(3):252–258, 2009. doi: 10.1016/j.enggeo.2009.06.013.
[16] Y. Wang and O.V. Akeju. Quantifying the cross-correlation between effective cohesion and friction angle of soil from limited site-specific data. Soils and Foundations, 56(6):1055–1070, 2016. doi: 10.1016/j.sandf.2016.11.009.
[17] E. Stockton, B.A. Leshchinsky, M.J. Olsen, and T.M. Evans. Influence of both anisotropic friction and cohesion on the formation of tension cracks and stability of slopes. Engineering Geology, 249:31–44, 2019. doi: 10.1016/j.enggeo.2018.12.016.
[18] J. Ye. 3D liquefaction criteria for seabed considering the cohesion and friction of soil. Applied Ocean Research, 37:111–119, 2012. doi: 10.1016/j.apor.2012.04.004.
[19] M. Ohno and K. Fukai. Pavement construction work of a road surface by soil cement concrete that used construction remainder soil. In Proceedings First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, pages 638–641, 1999. doi: 10.1109/ECODIM.1999.747690.
[20] J. Ling,Y.Yang, Z. Ma, and G.Yang. Engineering properties and treatment of hydraulically reclaimed saline soil in coastal area. In 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation, pages 275–278, 2014. doi: 10.1109/ICMTMA.2014.69.
[21] P.P. Kulkarni and J.N. Mandal. Strength evaluation of soil stabilized with nano silica- cement mixes as road construction material. Construction and Building Materials, 314:125363, 2022. doi: 10.1016/j.conbuildmat.2021.125363.
[22] T. Zhang, S. Liu, H. Zhan, C. Ma, and G. Cai. Durability of silty soil stabilized with recycled lignin for sustainable engineering materials. Journal of Cleaner Production, 248:119293, 2020. doi: 10.1016/j.jclepro.2019.119293.
[23] R.W. Day. Soil Testing Manual: Procedures, Classification Data, and Sampling Practices. McGraw Hill Inc., New York, U.S., 2001.
[24] T. Davis. Geotechnical Testing, Observation, and Documentation. American Society of Civil Engineers, Reston, Virginia, U.S., 2 edition, 2008.
[25] D. Hillel. Fundamentals of Soil Physics. Academic Press, New York, U.S., 1 edition, 1980.
[26] L.A.P. Barbosa, K.M. Gerke, and H.H. Gerke. Modelling of soil mechanical stability and hydraulic permeability of the interface between coated biopore and matrix pore regions. Geoderma, 410:115673, 2022. doi: 10.1016/j.geoderma.2021.115673.
[27] I.I. Obianyo, E.N. Anosike-Francis, G.O. Ihekweme, Y. Geng, R. Jin, A.P. Onwualu, and A.B. O. Soboyejo. Multivariate regression models for predicting the compressive strength of bone ash stabilized lateritic soil for sustainable building. Construction and Building Materials, 263:120677, 2020. doi: 10.1016/j.conbuildmat.2020.120677.
[28] L. Bakaiyang, J. Madjadoumbaye, Y. Boussafir, F. Szymkiewicz, and M. Duc. Re-use in road construction of a Karal-type clay-rich soil from North Cameroon after a lime/cement mixed treatment using two different limes. Case Studies in Construction Materials, 15:e00626, 2021. doi: 10.1016/j.cscm.2021.e00626.
[29] Z. Han, S.K. Vanapalli, J-P. Ren, and W-L. Zou. Characterizing cyclic and static moduli and strength of compacted pavement subgrade soils considering moisture variation. Soils and Foundations, 58(5):1187–1199, 2018. doi: 10.1016/j.sandf.2018.06.003.
[30] I. Kamal and Y. Bas. Materials and technologies in road pavements - an overview. Materials Today: Proceedings; 3rd International Conference on Materials Engineering & Science, 42:2660–2667, 2021. doi: 10.1016/j.matpr.2020.12.643.
[31] R. Jauberthie, F. Rendell, D. Rangeard, and L. Molez. Stabilisation of estuarine silt with lime and/or cement. Applied Clay Science, 50(3):395–400, 2010. doi: 10.1016/j.clay.2010.09.004.
[32] P. Lindh and P. Lemenkova. Resonant frequency ultrasonic P-waves for evaluating uniaxial compressive strength of the stabilized slag–cement sediments. Nordic Concrete Research, 65:39–62, 2021. doi: 10.2478/ncr-2021-0012">10.2478/ncr-2021-0012">10.2478/ncr-2021-0012.
[33] M. Arabi and S. Wild. Property changes induced in clay soils when using lime stabilization. Municipal Engineer, 6:85–99, 1989.
[34] P. Lindh. Compaction- and strength properties of stabilised and unstabilised fine-grained tills. PhD thesis, Lund University, Lund, Sweden, 2004.
[35] C. Liu and R.D. Starcher. Effects of curing conditions on unconfined compressive strength of cement- and cement-fiber-improved soft soils. Journal of Materials in Civil Engineering, 25(8):1134–1141, 2013. doi: 10.1061/(ASCE)MT.1943-5533.0000575.
[36] P.J. Venda Oliveira, A.A.S. Correia, and M.R. Garcia. Effect of organic matter content and curing conditions on the creep behavior of an artificially stabilized soil. Journal of Materials in Civil Engineering, 24(7):868–875, 2012. doi: 10.1061/(ASCE)MT.1943-5533.0000454.
[37] H. Ghasemzadeh, A. Mehrpajouh, M. Pishvaei, and M. Mirzababaei. Effects of curing method and glass transition temperature on the unconfined compressive strength of acrylic liquid polymer-stabilized kaolinite. Journal of Materials in Civil Engineering, 32 (8):04020212, 2020. doi: 10.1061/(ASCE)MT.1943-5533.0003287.
[38] A. Aldaood, M. Bouasker, and M. Al-Mukhtar. Effect of the temperature and curing time on the water transfer of lime stabilized gypseous soil. In Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, pages 2325–2333, 2013. doi: 10.1061/9780784412992.272.
[39] H. Yu, J. Yin, A. Soleimanbeigi, and W.J. Likos. Effects of curing time and fly ash content on properties of stabilized dredged material. Journal of Materials in Civil Engineering, 29(10):04017199, 2017. doi: 10.1061/(ASCE)MT.1943-5533.0002032.
[40] W.-S. Oh and Ta-H. Kim. Dependence of the material properties of lightweight cemented soil on the curing temperature. Journal of Materials in Civil Engineering, 26(7):06014008, 2014. doi: 10.1061/ (ASCE)MT.1943-5533.0000940.
[41] I.L. Howard and B.K. Anderson. Time-dependent properties of very high moisture content fine grained soils stabilized with portland and slag cement. In Geotechnical Frontiers 2017, pages 891–899, 2017. doi: 10.1061/9780784480472.095.
[42] N.C. Consoli, R.C. Cruz, and M.F. Floss. Variables controlling strength of artificially cemented sand: Influence of curing time. Journal of Materials in Civil Engineering, 23(5):692–696, 2011. doi: 10.1061/(ASCE)MT.1943-5533.0000205.
[43] A.T.M.Z. Rabbi and J.Kuwano. Effect of curing time and confining pressure on the mechanical properties of cement-treated sand. In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, pages 996–1005, 2012. doi: 10.1061/9780784412121.103.
[44] S. Chaiyaput, N. Arwaedo, N. Kingnoi, T. Nghia-Nguyen, and J. Ayawanna. Effect of curing conditions on the strength of soil cement. Case Studies in Construction Materials, 16:e01082, 2022. doi: 10.1016/j.cscm.2022.e01082.
[45] P. Lindh and P. Lemenkova. Geochemical tests to study the effects of cement ratio on potassium and TBT leaching and the pH of the marine sediments from the Kattegat Strait, Port of Gothenburg, Sweden. Baltica, 35(1):47–59, 2022. doi: 10.5200/baltica.2022.1.4.
[46] A.A. Amadi and A.S. Osu. Effect of curing time on strength development in black cotton soil – quarry fines composite stabilized with cement kiln dust (CKD). Journal of King Saud University - Engineering Sciences, 30(4):305–312, 2018. doi: 10.1016/j.jksues.2016.04.001.
[47] D.Wang, R. Zentar, and N.E. Abriak. Temperature-accelerated strength development in stabilized marine soils as road construction materials. Journal of Materials in Civil Engineering, 29(5):04016281, 2017. doi: 10.1061/(ASCE)MT.1943-5533.0001778.
[48] B. Rekik, M. Boutouil, and A. Pantet. Geotechnical properties of cement treated sediment: influence of the organic matter and cement contents. International Journal of Geotechnical Engineering, 3(2):205–214, 2009. doi: 10.3328/IJGE.2009.03.02.205-214.
[49] E.O. Tastan, T.B. Edil, C.H. Benson, and A.H. Aydilek. Stabilization of organic soils with fly ash. Journal of Geotechnical and Geoenvironmental Engineering, 137(9):819–833, 2011. doi: 10.1061/ (ASCE)GT.1943-5606.0000502.
[50] H. Hasan, H. Khabbaz, and B. Fatahi. Impact of quicklime and fly ash on the geotechnical properties of expansive clay. In Geo-China 2016: Advances in Pavement Engineering and Ground Improvement, pages 93–100, 2016. doi: 10.1061/9780784480014.012.
[51] P. Solanki, N. Khoury, and M. Zaman. Engineering behavior and microstructure of soil stabilized with cement kiln dust. In Geo-Denver 2007: Soil Improvement, pages 1–10, 2007. doi: 10.1061/40916(235)6.
[52] P. Lindh and P. Lemenkova. Evaluation of different binder combinations of cement, slag and CKD for s/s treatment of TBT contaminated sediments. Acta Mechanica et Automatica, 15(4):236–248, 2021. doi: 10.2478/ama-2021-0030.
[53] A. Arulrajah, A. Mohammadinia, A. D’Amico, and S. Horpibulsuk. Effect of lime kiln dust as an alternative binder in the stabilization of construction and demolition materials. Construction and Building Materials, 152:999–1007, 2017. doi: 10.1016/j.conbuildmat.2017.07.070.
[54] X. Bian, L. Zeng, X. Li, X. Shi, S. Zhou, and F. Li. Fabric changes induced by super-absorbent polymer on cement–lime stabilized excavated clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 13(5):1124–1135, 2021. doi: 10.1016/j.jrmge.2021.03.006.
[55] S. Andavan and V.K. Pagadala. A study on soil stabilization by addition of fly ash and lime. Materials Today: Proceedings; International Conference on Materials Engineering and Characterization 2019, 22:1125–1129, 2020. doi: 10.1016/j.matpr.2019.11.323.
[56] P. Indiramma, Ch. Sudharani, and S. Needhidasan. Utilization of fly ash and lime to stabilize the expansive soil and to sustain pollution free environment – an experimental study. Materials Today: Proceedings; International Conference on Materials Engineering and Characterization 2019, 22:694–700, 2020. doi: 10.1016/j.matpr.2019.09.147.
[57] C.A. Mozejko and F.M. Francisca. Enhanced mechanical behavior of compacted clayey silts stabilized by reusing steel slag. Construction and Building Materials, 239:117901, 2020. doi: 10.1016/j.conbuildmat.2019.117901.
[58] M.P. Durante Ingunza, K.L. de Araújo Pereira, and O F. dos Santos Junior. Use of sludge ash as a stabilizing additive in soil-cement mixtures for use in road pavements. Journal of Materials in Civil Engineering, 27(7):06014027, 2015. doi: 10.1061/(ASCE)MT.1943-5533.0001168.
[59] M.M. Al-Sharif and M.F. Attom. The use of burned sludge as a new soil stabilizing agent. In National Conference Environmental and Pipeline Engineering 2000, pages 378–388, 2000. doi: 10.1061/40507(282)42.
[60] P. Lindh. Optimizing binder blends for shallow stabilisation of fine-grained soils. Proceedings of the Institution of Civil Engineers - Ground Improvement, 5(1):23–34, 2001. doi: 10.1680/grim.2001.5.1.23.
[61] A. Ahmed. Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite. Applied Clay Science, 104:27–35, 2015. doi: 10.1016/j.clay.2014.11.031.
[62] P. Lindh and M.G. Winter. Sample preparation effects on the compaction properties of Swedish fine-grained tills. Quarterly Journal of Engineering Geology and Hydrogeology, 36(4):321–330, 2003. doi: 10.1144/1470-9236/03-018.
[63] P. Xu, Q. Zhang, H. Qian, M. Li, and F. Yang. An investigation into the relationship between saturated permeability and microstructure of remolded loess: A case study from Chinese Loess Plateau. Geoderma, 382:114774, 2021. doi: 10.1016/j.geoderma.2020.114774.
[64] A. Anagnostopoulos, G. Koukis, N. Sabatakakis, and G. Tsiambaos. Empirical correlations of soil parameters based on Cone Penetration Tests (CPT) for Greek soils. Geotechnical and Geological Engineering, 21:377–387, 2003. doi: 10.1023/B:GEGE.0000006064.47819.1a.
[65] H. Källén, A. Heyden, K. Åström, and P. Lindh. Measuring and evaluating bitumen coverage of stones using two different digital image analysis methods. Measurement, 84:56–67, 2016. doi: 10.1016/j.measurement.2016.02.007.
[66] V. Lemenkov and P. Lemenkova. Measuring equivalent cohesion Ceq of the frozen soils by compression strength using kriolab equipment. Civil and Environmental Engineering Reports, 31(2):63–84, 2021. doi: 10.2478/ceer-2021-0020.
[67] X. Huang, R. Horn, and T. Ren. Soil structure effects on deformation, pore water pressure, and consequences for air permeability during compaction and subsequent shearing. Geoderma, 406:115452, 2022. doi: 10.1016/j.geoderma.2021.115452.
[68] W. Kongkitkul, T. Saisawang, P. Thitithavoranan, P. Kaewluan, and T. Posribink. Correlations between the surface stiffness evaluated by light-weight deflectometer and degree of compaction. In Geo-Shanghai 2014: Tunneling and Underground Construction, pages 65–75, 2014. doi: 10.1061/9780784413449.007.
[69] K. Lee, M. Prezzi, and N. Kim. Subgrade design parameters from samples prepared with different compaction methods. Journal of Transportation Engineering, 133(2):82–89, 2007. doi: 10.1061/ (ASCE)0733-947X(2007)133:2(82).
[70] M. Bryk. Resolving compactness index of pores and solid phase elements in sandy and silt loamy soils. Geoderma, 318:109–122, 2018. doi: 10.1016/j.geoderma.2017.12.030.
[71] W. l. Zou, Z. Han, S.K. Vanapalli, J.-F. Zhang, and G.-T. Zhao. Predicting volumetric behavior of compacted clays during compression. Applied Clay Science, 156:116–125, 2018. doi: 10.1016/j.clay.2018.01.036.
[72] S.J.Wasman, M.C. McVay, K. Beriswill, D. Bloomquist, J. Shoucair, and D. Horhota. Study of laboratory compaction system variance using an Automatic Proctor Calibration Device. Journal of Materials in Civil Engineering, 25(4):429–437, 2013. doi: 10.1061/(ASCE)MT.1943- 5533.0000599.
[73] L. Di Matteo, F. Bigotti, and R. Ricco. Best-fit models to estimate modified Proctor properties of compacted soil. Journal of Geotechnical and Geoenvironmental Engineering, 135(7):992– 996, 2009. doi: 10.1061/(ASCE)GT.1943-5606.0000022.
[74] O. Boudlal and B. Melbouci. Study of the behavior of aggregates demolition by the Proctor and CBR tests. In GeoHunan International Conference 2009: Material Design, Construction, Maintenance, and Testing of Pavements, pages 75–80, 2009. doi: 10.1061/41045(352)12.
[75] L. Barden and G.R. Sides. Engineering behavior and structure of compacted clay. Journal of the Soil Mechanics and Foundations Division, 96(4):1171–1200, 1970. doi: 10.1061/JSFEAQ.0001434.
[76] M. Jibon and D. Mishra. Light weight deflectometer testing in Proctor molds to establish resilient modulus properties of fine-grained soils. Journal of Materials in Civil Engineering, 33(2):06020025, 2021. doi: 10.1061/(ASCE)MT.1943-5533.0003582.
[77] A. Aragón, M.G. García, R.R. Filgueira, and Ya.A. Pachepsky. Maximum compactibility of Argentine soils from the Proctor test: The relationship with organic carbon and water content. Soil and Tillage Research, 56(3):197–204, 2000. doi: 10.1016/S0167-1987(00)00144-6.
[78] H. Bayat, S. Asghari, M. Rastgou, and G.R. Sheykhzadeh. Estimating Proctor parameters in agricultural soils in the Ardabil plain of Iran using support vector machines, artificial neural networks and regression methods. CATENA, 189:104467, 2020. doi: 10.1016/j.catena.2020.104467.
[79] A.B.J.C. Nhantumbo and A.H. Cambule. Bulk density by Proctor test as a function of texture for agricultural soils in Maputo province of Mozambique. Soil and Tillage Research, 87(2):231–239, 2006. doi: 10.1016/j.still.2005.04.001.
[80] A. Alaoui, J. Lipiec, and H.H. Gerke. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil and Tillage Research, 115-116:1–15, 2011. doi: 10.1016/j.still.2011.06.002.
[81] ASTM Standard D698. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTM International, West Conshohocken, PA, U. S., ICS Code: 93.020 edition, 2007. doi: 10.1520/D0698-07E01.
[82] ASTM Standard D1557. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort. ASTM International,West Conshohocken, PA, U. S., 2009. doi: 10.1520/D1557-09.
[83] L. Wang, X. Xie, and H. Luan. Influence of laboratory compaction methods on shear performance of graded crushed stone. Journal of Materials in Civil Engineering, 23(10):1483–1487, 2011. doi: 10.1061/(ASCE)MT.1943-5533.0000323.
[84] A. Alaoui and A. Helbling. Evaluation of soil compaction using hydrodynamic water content variation: Comparison between compacted and non-compacted soil. Geoderma, 134(1):97– 108, 2006. doi: 10.1016/j.geoderma.2005.08.016.
[85] M. Livneh and N.A. Livneh. Use of the one-point Proctor modified compaction method in family compaction curves possessing a limited trend characteristic. In Airfield and Highway Pavement 2013: Sustainable and Efficient Pavements, pages 1304–1315, 2013. doi: 10.1061/9780784413005.110.
[86] A.F. Elhakim. Estimation of soil permeability. Alexandria Engineering Journal, 55(3):2631– 2638, 2016. doi: 10.1016/j.aej.2016.07.034.
[87] Y. Yu, J.A. Huisman, A. Klotzsche, H. Vereecken, and L. Weihermüller. Coupled fullwaveform inversion of horizontal borehole ground penetrating radar data to estimate soil hydraulic parameters: A synthetic study. Journal of Hydrology, 610:127817, 2022. doi: 10.1016/j.jhydrol.2022.127817.
[88] J. Zhou, S. Laumann, and T.J. Heimovaara. Applying aluminum-organic matter precipitates to reduce soil permeability in-situ:Afield and modeling study. Science of The Total Environment, 662:99–109, 2019. doi: 10.1016/j.scitotenv.2019.01.109.
[89] A. Takai, T. Inui, and T. Katsumi. Evaluating the hydraulic barrier performance of soilbentonite cutoff walls using the piezocone penetration test. Soils and Foundations, 56(2):277– 290, 2016. doi: 10.1016/j.sandf.2016.02.010.
[90] Y.X. Lim, S.A. Tan, and K.-K. Phoon. Interpretation of horizontal permeability from piezocone dissipation tests in soft clays. Computers and Geotechnics, 107:189–200, 2019. doi: 10.1016/j.compgeo.2018.12.001.
[91] Y. Liu, S.J. Chen, K. Sagoe-Crentsil, andW. Duan. Predicting the permeability of consolidated silty clay via digital soil reconstruction. Computers and Geotechnics, 140:104468, 2021. doi: 10.1016/j.compgeo.2021.104468.
[92] T. Shibi and Y. Ohtsuka. Influence of applying overburden stress during curing on the unconfined compressive strength of cement-stabilized clay. Soils and Foundations, 61(4):1123–1131, 2021. doi: 10.1016/j.sandf.2021.03.007.
[93] N. Kardani, A. Zhou, S.-L. Shen, and M. Nazem. Estimating unconfined compressive strength of unsaturated cemented soils using alternative evolutionary approaches. Transportation Geotechnics, 29:100591, 2021. doi: 10.1016/j.trgeo.2021.100591.
[94] F. Mousavi, E. Abdi, S. Ghalandarayeshi, and D.S. Page-Dumroese. Modeling unconfined compressive strength of fine-grained soils: Application of pocket penetrometer for predicting soil strength. CATENA, 196:104890, 2021. doi: 10.1016/j.catena.2020.104890.
[95] A. Ahmed. Compressive strength and microstructure of soft clay soil stabilized with recycled bassanite. Applied Clay Science, 104:27–35, 2015. doi: 10.1016/j.clay.2014.11.031.
[96] J.B. Burland. On the compressibility and shear strength of natural clays. Géotechnique, 40(3):329–378, 1990. doi: 10.1680/geot.1990.40.3.329.
[97] S.M. Rao and P. Shivananda. Compressibility behaviour of lime-stabilized clay. Geotechnical and Geological Engineering, 23:301–311, 2005. doi: 10.1007/s10706-004-1608-2.
[98] M. Al-Mukhtar, S. Khattab, and J.-F. Alcover. Microstructure and geotechnical properties of lime-treated expansive clayey soil. Engineering Geology, 139-140:17–27, 2012. doi: 10.1016/j.enggeo.2012.04.004.
[99] A. al-Swaidani, I. Hammoud, and A. Meziab. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering, 8(5):714–725, 2016. doi: 10.1016/j.jrmge.2016.04.002.
[100] C. Phetchuay, S. Horpibulsuk, A. Arulrajah, C. Suksiripattanapong, and A. Udomchai. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. Applied Clay Science, 127-128:134–142, 2016. doi: 10.1016/j.clay.2016.04.005.
[101] V. Lemenkov and P. Lemenkova. Testing deformation and compressive strength of the frozen fine-grained soils with changed porosity and density. Journal of Applied Engineering Sciences, 11(2):113–120, 2021. doi: 10.2478/jaes-2021-0015.
[102] V. Lemenkov and P. Lemenkova. Using TeX markup language for 3D and 2D geological plotting. Foundations of Computing and Decision Sciences, 46(3):43–69, 2021. doi: 10.2478/fcds-2021-0004.
[103] P.K. Robertson, S. Sasitharan, J.C. Cunning, and D.C. Sego. Shear-wave velocity to evaluate in-situ state of Ottawa sand. Journal of Geotechnical Engineering, 121(3):262–273, 1995. doi: 10.1061/(ASCE)0733-9410(1995)121:3(262).
[104] K. Komal, S. Bawa, and S. KantSharma. Laboratory investigation on the effect of polypropylene and nylon fiber on silt stabilized clay. Materials Today: Proceedings; International Conference on Smart and Sustainable Developments in Materials, Manufacturing and Energy Engineering, 52:1368–1376, 2021. doi: 10.1016/j.matpr.2021.11.123.
[105] H. Källén, A. Heyden, and P. Lindh. Estimation of grain size in asphalt samples using digital image analysis. In Proceedings: Applications of Digital Image Processing XXXVII, volume 9217, pages 292–300, 2014. doi: 10.1117/12.2061730.
[106] Swedish Institute for Standards. SIS: Geotechnical investigation and testing – Laboratory testing of soil – Part 7: Unconfined compression test (ISO 17892-7:2017), 2017. ISO 17892- 7:2017.
[107] Swedish Institute for Standards. SIS: Earthworks – Part 4: Soil treatment with lime and/or hydraulic binders. online, 2018. SS-EN 16907-4:2018.
[108] Swedish Institute for Standards. Geotechnical investigation and testing - Laboratory testing of soil - Part 11: Permeability tests (ISO 17892-11:2019). online, 2019. Article no: STD- 80010356.
[109] BSI Standards Publication. Cement part 1: Composition, specifications and conformity criteria for common cements. European Standard (English version), 2011. BS EN 197-1:2011. ISBN: 978 0 580 68241 4.
[110] Thomas Concrete Group. Teknisk Information. Slagg Bremen Mald granulerad masugnsslagg för användning i betong och bruk enligt SS 137003. https://thomasconcretegroup.com/us/, 2014. Retrieved 2014-01-16 from Thomas Concrete Group.
[111] N.Ryden,U. Dahlen, P. Lindh, and A. Jakobsson. Impact non-linear reverberation spectroscopy applied to non-destructive testing of building materials. The Journal of the Acoustical Society of America, 140(4):3327–3327, 2016. doi: 10.1121/1.4970601.
Go to article

Authors and Affiliations

Per Lindh
1 2
ORCID: ORCID
Polina Lemenkova
3
ORCID: ORCID

  1. Swedish Transport Administration, Malmö, Sweden
  2. Lund University (Lunds Tekniska Högskola, LTH), Faculty of Engineering, Department of Building and Environmental Technology, Division of Building Materials, Lund, Sweden
  3. Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis, Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

A numerical algorithm is presented for the filling process of a cylindrical column with equilateral cylinders. The process is based on simplified mechanics - the elements are added one by one until the mechanical equilibrium is reached. The final structure is examined with respect to the global and local porosity distribution. Oscillating radial porosity profile is obtained in accordance with experimental data.

Go to article

Authors and Affiliations

Maciej Marek
Download PDF Download RIS Download Bibtex

Abstract

During design of the casting products technology, an important issue is a possibility of prediction of mechanical properties resulting from the course of the casting solidification process. Frequently there is a need for relations describing mechanical properties of silumin alloys as a function of phase refinement in a structure and a porosity fraction, and relations describing phase refinement in the structure and the porosity fraction as a function of solidification conditions. The study was conducted on castings of a 22 mm thick plate, made of EN AC-AlSi7Mg0,3 alloy in moulds: of quartz sand, of quartz sand with chill and in permanent moulds. On the basis of cooling curves, values of cooling rate in various casting parts were calculated. The paper also presents results of examination of distance between arms in dendrites of a solid solution α (DASL), precipitations length of silicon in an eutectic (DlSi) and gas-shrinkage porosity (Por) as a function of cooling rate. Statistical relations of DASL, DlSi, Por as a function of cooling rate and statistical multiparameter dependencies describing mechanical properties (tensile strength, yield strength, elongation) of alloy as a function of DASL, DlSi and Por are also presented in the paper.
Go to article

Authors and Affiliations

M. Hajkowski
Ł. Bernat
J. Hajkowski
Download PDF Download RIS Download Bibtex

Abstract

In the design of asphalt mixtures for paving, the choice of components has a remarkable importance,as requirements of quality and durability must be assured in use, guaranteeing adequate standardsof safety and comfort.

In this paper, an approach of analysis on the aggregate materials using fractal geometry is proposed. Following an analytical and an experimental approach, it was possible to find a correlation betweencharacteristics of the asphalt concrete (specific gravity and porosity) and the fractal dimension ofthe aggregate mixtures.

The studies revealed that this approach allows to draw the optimal fractal dimension and, conse-quently, it can be used to choose an appropriate aggregate gradation for the specific application;once the appropriate initial physical parameters are finalized.

This fractal approach could be employed for predicting the porosity of mixed asphalt concretes,given as input the fractal characteristics of the aggregate mixtures of the concrete materials.

Go to article

Authors and Affiliations

G. Leonardi
Download PDF Download RIS Download Bibtex

Abstract

Liquid forging alias squeeze casting gives the combined advantage of casting and forging. Optimum process parameters are important to get a cost-efficient process. In this study, four materials have been identified, which are extensively used in industries. These materials are commercially pure Al and three Al-alloys namely, 2124, 2218 and 6063. The pouring temperature and the mold temperature is maintained at 700oC and 250oC respectively. The materials were developed at seven pressure variations from 0 to 150 MPa. The effect of the pressure on the microstructures, porosity, and hardness has been reported. The coefficient of solubility is estimated for all materials and a polynomial relationship is found to be the best fit with the applied pressure. The pressure of 100 MPa gives better increment in hardness. The melting point and the freezing coefficient of the materials under study have been determined. A linear relationship between the pressure and the freezing time is deduced. It is observed that the solubility and the freezing coefficients depend on the pressure as well, in addition to the composition and temperature.

Go to article

Authors and Affiliations

Vineet Tirth
Amir Arabi
Download PDF Download RIS Download Bibtex

Abstract

An experimental study was performed to assess the influences of aluminum content on the porosity, microstructure and mechanical properties of powder metallurgy steels. Optical microscope equipped with the image processing software and the scanning electron microscope were employed to study the microstructure of investigated specimens. In order to find mechanical properties of specimens, Vickers hardness and compression tests were conducted. By increasing the aluminum content (from 0 to 4 wt. %), the porosity increases (from 6.01% to 8.43%). The microstructure of specimens contains aluminum phase distributed between the boundaries of agglomerated iron particles, ferrite, and pearlite. By increasing the aluminum content, stress-strain curves shift significantly downwards, and the modulus of elasticity, elongation, yield stress, and Vickers hardness reduce from 1.82 to 0.86 GPa, 32.1 to 17.8%, 138.1 to 28.2 MPa, and 127.7 to 26.8 HV, respectively.
Go to article

Authors and Affiliations

Hamid Sazegaran
1
Hasan Bahari
1
Ali Mohammad Naserian-Nik
2
Farhad Khorramshahi
3

  1. Quchan University of Technology, Faculty of Engineering, Department of Industrial Engineering, Quchan, Iran
  2. Quchan University of Technology, Engineering Faculty, Department of Mechanical Engineering, Quchan, Iran
  3. Research and Development (R&D) Manager, Mashhad Powder Metallurgy, Mashhad, Iran
Download PDF Download RIS Download Bibtex

Abstract

Porosity is one of the major problems in casting operations and there are several discussions in the literature about the porosity formation in aluminum castings. Bifilms are the defects that are introduced into the melt by turbulence. They can be detected with reduced pressure test and presented numerically by measuring bifilm index. The measure of bifilm index is the sum of total oxide length given in millimeters from the cross-section of reduced pressure test sample solidified under 0.01 MPa. In this work, low pressure die casting (LPDC) unit was built in an attempt to enhance the producibility rate. The unit consists of a pump housing that was placed inside the melt in the melting furnace where the pressure was applied instead of the whole melt surface. It was observed that the melt quality of A356 alloy was deteriorated over time which had led to higher porosity. This was attributed to the increased oxide thickness of the bifilm by the consumption of air in between the folded oxides. A relationship was found between bifilm index and pore formation.
Go to article

Bibliography

[1] Campbell, J. (2011). Complete Casting Handbook: Metal Casting Processes. Techniques and Design. Elsevier Science.
[2] Bonollo, F., Urban, J., Bonatto, B. & Botter, M. (2005). Gravity and low pressure die casting of aluminium alloys: a technical and economical benchmark. La Metallurgia Italiana. 6, 23-32.
[3] Dispinar, D. & J. Campbell, (2004). Critical assessment of reduced pressure test. Part 2: Quantification. International Journal of Cast Metals Research. 17(5), 287-294.
[4] Raiszadeh, R., & Griffiths, W.D. (2006). A method to study the history of a double oxide film defect in liquid aluminum alloys. Metallurgical and Materials Transactions B. 37(6), 865-871.
[5] Raiszadeh, R., & Griffiths, W.D. (2008). A semi-empirical mathematical model to estimate the duration of the atmosphere within a double oxide film defect in pure aluminum alloy. Metallurgical and Materials Transactions B. 39(2), 298-303.
[6] Raiszadeh, R., & Griffiths, W.D. (2011). The effect of holding liquid aluminum alloys on oxide film content. Metallurgical and Materials Transactions B. 42(1), 133-143.
[7] Aryafar, M., Raiszadeh, R., & Shalbafzadeh, A. (2010). Healing of double oxide film defects in A356 aluminium melt. Journal of materials science. 45(11), 3041-3051.
[8] Farhoodi, B., Raiszadeh, R., & Ghanaatian, M. H. (2014). Role of double oxide film defects in the formation of gas porosity in commercial purity and Sr-containing Al alloys. Journal of Materials Science & Technology. 30(2), 154-162.
[9] Amirinejhad, S., Raiszadeh, R., & Doostmohammadi, H. (2013). Study of double oxide film defect behaviour in liquid Al–Mg alloys. International Journal of Cast Metals Research. 26(6), 330-338.
[10] Bakhtiarani, F.N., & Raiszadeh, R. (2011). Healing of double-oxide film defects in commercial purity aluminum melt. Metallurgical and Materials Transactions B. 42(2), 331-340.
[11] Bagherpour-Torghabeh, H., Raiszadeh, R., & Doostmohammadi, H. (2017). Role of Mechanical Stirring of Al-Mg Melt in the Healing of Bifilm Defect. Metallurgical and Materials Transactions B. 48(6), 3174-3184.
[12] Nateghian, M., Raiszadeh, R., & Doostmohammadi, H. (2012). Behavior of Double-Oxide Film Defects in Al-0.05 wt pct Sr Alloy. Metallurgical and Materials Transactions B. 43(6), 1540-1549.
[13] Stefanescu, D.M. (2005). Computer simulation of shrinkage related defects in metal castings - a review. International Journal of Cast Metals Research. 18, 129-143.
[14] Zhu, J.D., Cockcroft, S.L., Maijer, D.M. & Ding, R. (2005). Simulation of microporosity in A356 aluminium alloy castings. International Journal of Cast Metals Research. 18, 229-235.
[15] Merlin, M., Timelli, G., Bonollo, F. & Garagnani, G.L. (2009). Impact behaviour of A356 alloy for low-pressure die casting automotive wheels. Journal of Materials Processing Technology. 209(2), 1060-1073.
[16] Zhang, B., Maijer, D.M. & Cockcroft, S.L. (2007). Development of a 3-D thermal model of the low-pressure die-cast (LPDC) process of A356 aluminum alloy wheels. Materials Science and Engineering: A, 464(1-2), 295-305.
[17] Zhang, B., Cockcroft, S.L., Maijer, D.M., Zhu, J.D. & Phillion, A.B. Casting defects in low-pressure die-cast aluminum alloy wheels. JOM Journal of the Minerals, Metals and Materials Society, 57(11), 36-43.
[18] Campbell, J. (1968). Hydrostatic tensions in solidifying materials. Transactions of the Metallurgical Society of AIME, 242 (February), 264-267.
[19] Campbell, J. (1968). Hydrostatic tensions in solidifying alloys. Transactions of the Metallurgical Society of AIME, 242 (February), 268-271.
[20] Campbell, J. (1967), Shrinkage pressure in castings (The solidification of a Metal Sphere). Transactions of the Metallurgical Society of AIME, 239 (February), 138-142.
[21] Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena. International Journal of Cast Metals Research. 17(5), 280-286.
[22] Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M., & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering: A. 527(16-17), 3719-3725.
[23] Puga, H., Barbosa, J., Azevedo, T., Ribeiro, S. & Alves, J.L. (2016). Low pressure sand casting of ultrasonically degassed AlSi7Mg0. 3 alloy: Modelling and experimental validation of mould filling. Materials & Design. 94, 384-391.
[24] El-Sayed, M.A. & Essa, K. (2018). Effect of mould type and solidification time on bifilm defects and mechanical properties of Al–7si–0.3 mg alloy castings. Computational and Experimental Studies, 23.
[25] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. [26] Gyarmati, G., Fegyverneki, G., Tokár, M., & Mende, T. (2020). The Effects of Rotary Degassing Treatments on the Melt Quality of an Al–Si Casting Alloy. International Journal of Metalcasting. 1-11.
[27] Tiryakioğlu, M. (2020). The Effect of Hydrogen on Pore Formation in Aluminum Alloy Castings: Myth Versus Reality. Metals. 10(3), 368.
[28] Tiryakioğlu, M. (2019). Solubility of hydrogen in liquid aluminium: reanalysis of available data. International Journal of Cast Metals Research. 32(5-6), 315-318.
[29] Tiryakioğlu, M. (2020). A simple model to estimate hydrogen solubility in liquid aluminium alloys. International Journal of Cast Metals Research. 1-3.
Go to article

Authors and Affiliations

O. Gursoy
1
A. Nordmak
2
F. Syvertsen
2
M. Colak
3
K. Tur
4
D. Dispinar
5
ORCID: ORCID

  1. University of Padova, Italy
  2. SINTEF, Norway
  3. University of Bayburt, Turkey
  4. Atilim University, Turkey
  5. Istanbul Technical University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Production of the defect-free casting of aluminium alloys is the biggest challenge. Porosity is known to be the most important defect. Therefore, many cast parts are subjected to several non-destructive tests in order to check their acceptability. There are several standards, yet, the acceptance limit of porosity size and distribution may change according to the customer design and requirements. In this work, the aim was targeted to evaluate the effect of size, location, and distribution of pores on the tensile properties of cast A356 alloy. ANSYS software was used to perform stress analysis where the pore sizes were changed between 0.05 mm to 3 mm by 0.05 mm increments. Additionally, pore number was changed from 1 to 5 where they were placed at different locations in the test bar. Finally, bifilms were placed inside the pore at different sizes and orientations. The stress generated along the pores was recorded and compared with the fracture stress of the A356 alloy. It was found that as the bifilm size was getting smaller, their effect on tensile properties was lowered. On the other hand, as bifilms were larger, their orientation became the dominant factor in determining the fracture.
Go to article

Bibliography

[1] Buffiere, J.-Y., Savelli, S., Jouneau, P.-H., Maire, E. & Fougeres, R. (2001). Experimental study of porosity and its relation to fatigue mechanisms of model Al–Si7–Mg0. 3 cast Al alloys. Materials Science and Engineering: A. 316(1-2), 115-126. DOI: 10.1016/S0921-5093(01)01225-4.
[2] Dispinar, D. & Campbell, J. (2011). Porosity, hydrogen and bifilm content in Al alloy castings. Materials Science and Engineering: A. 528(10-11), 3860-3865. DOI: 10.1016/j.msea.2011.01.084.
[3] Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena. International Journal of Cast Metals Research. 17, 280-286. DOI: 10.1179/136404604225020696.
[4] Dispinar, D. & Campbell, J. (2004). Critical assessment of reduced pressure test. Part 2: Quantification. International Journal of Cast Metals Research. 17, 287-294. DOI: 10.1179/136404604225020704.
[5] Dispinar, D. & Campbell, J. (2006). Use of bifilm index as an assessment of liquid metal quality. International Journal of Cast Metals Research. 19, 5-17. DOI: 10.1179/136404606225023300.
[6] Dispinar, D. & Campbell, J. (2007). Effect of casting conditions on aluminium metal quality. Journal of Materials Processing Technology. 182, 405-410. DOI: 10.1016/j.jmatprotec.2006.08.021.
[7] Campbell, J. (2015). Complete casting handbook: metal casting processes, metallurgy, techniques and design. Butterworth-Heinemann.
[8] Dispinar, D. & Campbell, J. (2014). Reduced pressure test (RPT) for bifilm assessment. in Shape Casting: 5th International Symposium 2014, 243-251.
[9] Asadian Nozari, M., Taghiabadi, R., Karimzadeh, M. & Ghoncheh, M. H. (2015). Investigation on beneficial effects of beryllium on entrained oxide films, mechanical properties and casting reliability of Fe-rich Al–Si cast alloy. Materials Science and Technology. 31, 506-512. DOI: 10.1179/1743284714Y.0000000656.
[10] Bagherpour-Torghabeh, H., Raiszadeh, R. & Doostmohammadi, H. (2017). Role of Mechanical Stirring of Al-Mg Melt in the Healing of Bifilm Defect. Metallurigical and Materials Transactions B. 48, 3174-3184. DOI: 10.1007/s11663-017-1067-9.
[11] Bjurenstedt, A., Seifeddine, S. & Jarfors, A. E. W. (2015). On the complexity of the relationship between microstructure and tensile properties in cast aluminum. International Journal of Modern Physics B. 29, 1540011. DOI: 10.1142/S0217979215400111.
[12] Bozchaloei, G. E., Varahram, N., Davami, P. & Kim, S. K. (2012). Effect of oxide bifilms on the mechanical properties of cast Al–7Si–0.3 Mg alloy and the roll of runner height after filter on their formation. Materials Science and Engineering A. 548, 99-105. DOI: 10.1016/j.msea.2012.03.097.
[13] Çolak, M., Kayikci, R. & Dispinar, D. (2016). Melt cleanliness comparison of chlorine fluxing and ar degassing of secondary Al-4Cu. Metallurgical and Materials Transactions B. 47, 2705-2709. DOI: 10.1007/s11663-016-0745-3.
[14] Davami, P., Kim, S. K. & Varahram, N. (2012). Effects of hydrogen and oxides on tensile properties of Al–Si–Mg cast alloys. Materials Science and Engineering A. 552, 36-47. DOI: 10.1016/j.msea.2012.04.111.
[15] Davami, P., Kim, S. K. & Tiryakioğlu, M. (2013). The effect of melt quality and filtering on the Weibull distributions of tensile properties in Al–7% Si–Mg alloy castings. Materials Science and Engineering A. 579, 64-70. DOI: 10.1016/j.msea.2013.05.014.
[16] Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M. & Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356. Materials Science and Engineering A. 527, 3719-3725. DOI: 10.1016/j.msea.2010.01.088.
[17] El-Sayed, M. A., Hassanin, H. & Essa, K. (2016). Bifilm defects and porosity in Al cast alloys. The International Journal of Advanced Manufacturing Technology. 86, 1173-1179. DOI: 10.1007/s00170-015-8240-6.
[18] El-Sayed, M. A., Hassanin, H. & Essa, K. (2016). Effect of casting practice on the reliability of Al cast alloys. International Journal of Cast Metals Research. 29, 350-354. DOI: 10.1080/13640461.2016.1145966.
[19] El-Sayed, M. A., Salem, H. A. G., Kandeil, A. Y. & Griffiths, W. D. (2014). Determination of the lifetime of a double-oxide film in al castings. Metallurgical and Materials Transactions B. 45, 1398-1406. DOI: 10.1007/s11663-014-0035-x.
[20] Erzi, E., Gürsoy, Ö., Yüksel, Ç., Colak, M. & Dispinar, D. (2019). Determination of acceptable quality limit for casting of A356 aluminium alloy: supplier’s quality index (SQI). Metals. 9, 957. DOI: 10.3390/met9090957.
[21] Fiorese, E., Bonollo, F., Timelli, G., Arnberg, L. & Gariboldi, E. (2015). New classification of defects and imperfections for aluminum alloy castings. International Journal of Metalcasting. 9, 55-66. DOI: 10.1007/BF03355602.
[22] Gopalan, R. & Prabhu, N. K. (2011). Oxide bifilms in aluminium alloy castings–a review. Materials Science and Technology. 27, 1757-1769. DOI: 10.1179/1743284711Y.0000000033.
[23] Hsu, F.-Y., Jolly, M. R. & Campbell, J. (2007). The design of L-shaped runners for gravity casting. in Metals & Materials Society The Minerals, Proceedings of Shape Casting: 2nd International Symposium, Orlando, FL, USA.
[24] Kang, M. et al. (2014). Tensile properties and microstructures of investment complex shaped casting. Materials Science and Technology. 30, 1349-1353. DOI: 10.1179/1743284713Y.0000000444.
[25] Mostafaei, M., Ghobadi, M., Eisaabadi, G., Uludağ, M. & Tiryakioğlu, M. (2016). Evaluation of the effects of rotary degassing process variables on the quality of A357 aluminum alloy castings. Metallurgical and Materials Transactions B. 47, 3469-3475. DOI: 10.1007/s11663-016-0786-7.
[26] Puga, H., Barbosa, J., Azevedo, T., Ribeiro, S. & Alves, J. L. (2016). Low pressure sand casting of ultrasonically degassed AlSi7Mg0.3 alloy: modelling and experimental validation of mould filling. Materials and Design. 94, 384-391. DOI: 10.1016/j.matdes.2016.01.059.
[27] Stefanescu, D. M. (2005). Computer simulation of shrinkage related defects in metal castings–a review. International Journal of Cast Metals Research. 18, 129-143. DOI: 10.1179/136404605225023018.
[28] Tiryakioğlu, M., Campbell, J. & Nyahumwa, C. (2011). Fracture surface facets and fatigue life potential of castings. Metallurgical and Materials Transactions B. 42, 1098-1103. DOI: 10.1007/s11663-011-9577-3.
[29] Tunçay, T. & Bayoğlu, S. (2017). The effect of iron content on microstructure and mechanical properties of A356 cast alloy. Metallurgical and Materials Transactions B. 48, 794-804. DOI: 10.1007/s11663-016-0909-1.
[30] Tunçay, T., Tekeli, S., Özyürek, D. & Dispinar, D. (2017). Microstructure–bifilm interaction and its relation with mechanical properties in A356. International Journal of Cast Metals Research. 30, 20-29. DOI: 10.1080/13640461.2016.1192826.
[31] Uludağ, M., Çetin, R., Dispinar, D. & Tiryakioğlu, M. (2017). Characterization of the Effect of Melt Treatments on Melt Quality in Al-7wt %Si-Mg Alloys. Metals. 7(5), 157. DOI: 10.3390/met7050157.
[32] Uludağ, M., Çetin, R., Dişpinar, D. & Tiryakioğlu, M. (2018). On the interpretation of melt quality assessment of A356 aluminum alloy by the reduced pressure test: the bifilm index and its physical meaning. International Journal of Metalcasting. 12, 853–860. DOI: 10.1007/s40962-018-0217-4.
[33] Yorulmaz, A., Erzi, E., Gursoy, O. & Dispinar, D. (2019). End product rejection rate and its correlation with melt treatment in direct-chill casted hot rolling slabs. International Journal of Cast Metals Research. 32, 164-170. DOI: 10.1080/13640461.2019.1598684.
[34] Zahedi, H. et al. (2007). The effect of Fe-rich intermetallics on the Weibull distribution of tensile properties in a cast Al-5 pct Si-3 pct Cu-1 pct Fe-0.3 pct Mg alloy. Metallurgical and Materials Transactions A. 38, 659-670. DOI: 10.1007/s11661-006-9068-3.
[35] Kuwazuru, O. et al. (2008). X-ray CT inspection for porosities and its effect on fatigue of die cast aluminium alloy. Journal of Solid Mechanics and Materials Engineering. 2(9), 1220-1231. DOI: 10.1299/jmmp.2.1220.
[36] Le, V.-D., Saintier, N., Morel, F., Bellett, D. & Osmond, P. (2018). Investigation of the effect of porosity on the high cycle fatigue behaviour of cast Al-Si alloy by X-ray micro-tomography. International Journal of Fatigue. 106, 24-37. DOI: 10.1016/j.ijfatigue.2017.09.012.
[37] Wang, L. et al. (2016). Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting A319 alloy by using 3D in-situ analysis. Materials Science and Engineering A. 673, 362-372. DOI: 10.1016/j.msea.2016.07.036.
[38] Vincent, M., Nadot-Martin, C., Nadot, Y. & Dragon, A. (2014). Fatigue from defect under multiaxial loading: efect Stress Gradient (DSG) approach using ellipsoidal Equivalent Inclusion Method. International Journal of Fatigue. 59, 176-187. DOI: 10.1016/j.ijfatigue.2013.08.027.
[39] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. DOI: 10.1016/j.matchar.2019.109925.
[40] Kobayashi, M., Dorce, Y., Toda, H. & Horikawa, H. (2010). Effect of local volume fraction of microporosity on tensile properties in Al–Si–Mg cast alloy. Materials Science and Technology. 26, 962-967. DOI: 10.1179/174328409X 441283.
[41] Nikishkov, G. P. (2004). Introduction to the finite element method. Univ. Aizu 1-70.
Go to article

Authors and Affiliations

H. Sahin
1
ORCID: ORCID
M. Atik
1
F. Tezer
1
S. Temel
1
O. Aydin
1
O. Kesen
1
O. Gursoy
2
D. Dispinar
3
ORCID: ORCID

  1. Istanbul Technical University, Turkey
  2. University of Padova, Italy
  3. Foseco, Netherlands
Download PDF Download RIS Download Bibtex

Abstract

The technology of high-pressure die-casting (HPDC) of aluminum alloys is one of the most used and most economical technology for mass production of castings. High-pressure die-casting technology is characterized by the production of complex, thin-walled and dimensionally accurate castings. An important role is placed on the effective reduction of costs in the production process, wherein the combination with the technology of high-pressure die-casting is the possibility of recycling using returnable material. The experimental part of the paper focuses on the analysis of a gradual increase of the returnable material amount in combination with a commercial purity alloy for the production of high-pressure die-castings. The returnable material consisted of the so-called foundry waste (defective castings, venting and gating systems, etc.). The first step of the experimental castings evaluation consisted of numerical simulations, performed to determine the points of the casting, where porosity occurs. In the next step, the evaluation of areal porosity and microstructural analysis was performed on experimental castings with different amounts of returnable material in the batch. The evaluation of the area porosity showed only a small effect of the increased amount of the returnable material in the batch, where the worst results were obtained by the casting of the alloy with 90% but also with 55% of the returnable material in the batch. The microstructure analysis showed that the increase in returnable material in the batch was visibly manifested only by a change in the morphology of the eutectic Si.
Go to article

Bibliography

[1] Ragan, E. (2007). Die casting of metals. Prešov, Slovakia. (in Slovak).
[2] Eperješi, Ľ., Malik, J., Eperješi Š. & Fecko D. (2013) Influence of returning material on porosity of die castings. Manufacturing Technology. 13(1), 36-39. DOI: 10.21062/ujep/x.2013/a/1213-2489/MT/13/1/36.
[3] Gaustad, G., Olivetti, E. A. & Kirchain, R. (2012). Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resources Conservation and Recycling. 58, 79-87.
[4] Matejka, M., Bolibruchová, D. & Kuriš, M. (2021). Crystallization of the structural components of multiple remelted AlSi9Cu3 alloy. Archives of Foundry Engineering. 21(2), 41-45. DOI: 10.24425/afe.2021.136096.
[5] Bruna, M., Remišová, A. & Sládek, A. (2019). Effect of filter thickness on reoxidation and mechanical properties of aluminium alloy AlSi7Mg0.3. Archives of Metallurgy and Materials. 3, 1100-1106. DOI: 10.24425/amm.2019.129500.
[6] Bryksi Stunova, B. & Bryksi, V. (2016). Analysis of defects in castings cast by rheocasting method SEED. Archives of Foundry Engineering. 16(3), 15-18. DOI: 10.1515/afe-2016-0041.
[7] Podprocká, R. & Bolibruchová, D. (2017). Iron intermetallic phases in the alloy based on Al-Si-Mg by applying manganese. Archives of Foundry Engineering. 17(3), 217-221. DOI: 10.24425/afe.2020.133321.
[8] Martinec, D., Pastircak, R. & Kantorikova, E. (2020). Using of technology semisolid squeeze casting by different initial states of material. Archives of Foundry Engineering. 20(1), 117-121. DOI: 10.24425/afe.2020.131292.
Go to article

Authors and Affiliations

M. Matejka
1
ORCID: ORCID
D. Bolibruchová
1
ORCID: ORCID
R. Podprocká
2

  1. University of Zilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Univerzitna 1, 010 26 Zilina, Slovak Republic
  2. Rosenberg-Slovakia s.r.o., Kováčska 38, 044 25 Medzev, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

Plates of AZ91 cast magnesium alloy with a thickness of 3.5 mm were butt-welded using a laser power of 2000 W and helium as the shielding gas. The effect of the welding speed on the weld cross-sectional geometry and porosity was determined by microscopic analysis. It was found that to avoid the formation of macropores, welding should be carried out at a speed of 3.4 m/min or higher. Non-equilibrium solidification of the laser-melted metal causes fragmentation of the weld microstructure. Joints that were welded at optimal laser processing parameters were subjected to structural observations using optical and scanning microscopy and to mechanical tests. The mechanical properties were determined through Vickers hardness measurements in the joint cross-section and through tensile testing. The results indicate that the hardness in the fusion zone was about 20 HV (30%) higher than that of the base material. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens fractured outside the fusion zone.

Go to article

Authors and Affiliations

A. Dziadoń
ORCID: ORCID
E. Musiał
Download PDF Download RIS Download Bibtex

Abstract

Refractories are the basic material for the construction of the lining of a melting furnace used, among other things, in the foundry industry. The article describes a comparative study of the influence of the type of moulding on the quality of the finished refractory product. A method for making products from refractory materials was proposed and a test methodology was developed. The results, based on a classic study of the quality of these materials, confirm a strong influence on the quality of the materials obtained in terms of reduced porosity and homogeneity of pore size.
Go to article

Authors and Affiliations

Alicja Trela
1
ORCID: ORCID
Alena Pribulová
2
ORCID: ORCID
Peter Futas
2
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Technical University Kosice, Department of Metallurgy, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Recently, 3D printing processes have been used to manufacture metal powder filters with manufacturing complex-shape. In this study, metal powder filters of various shapes were manufactured using the metal extrusion additive manufacturing (MEAM) process, which is used to manufacture three-dimensional structures by extruding a filament consisting of a metal powder and a binder. Firstly, filaments were prepared by appropriately mixing SUS316 powder with sizes ranging from 7.5 µm to 50 µm and a binder. These filaments were extruded at temperatures of 100℃ to 160℃ depending on the type of filament being manufactured, to form three types of cylindrical filter. Specimens were sintered in a high vacuum atmosphere furnace at 850℃ to 1050℃ for 1 hour after debinding. The specimens were analyzed for permeability using a capillary flow porometer, porosity was determined by applying Archimedes’ law and microstructure was observed using SEM.
Go to article

Authors and Affiliations

Yu-Jeong Yi
1 2
ORCID: ORCID
Min-Jeong Lee
1 2
ORCID: ORCID
Su-Jin Yun
1
ORCID: ORCID
Manho Park
3
ORCID: ORCID
Ju-Yong Kim
4
ORCID: ORCID
Jungwoo Lee
2
ORCID: ORCID
Jung-Yeul Yun
1
ORCID: ORCID

  1. Korea Institute of Materials Science (KIMS), Metal Powder Department, Changwon, 51508, Republic of Korea
  2. Pusan National University, Department of Materials Science and Engineering, Busan, 46241, Republic of Korea
  3. R&D Center, ASFLOW CO. Ltd, Hwasung, 16648, Republic of Korea
  4. 3DP R&D Center, REPROTECH, Suwon, 16229, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Refractories are the basic material for the construction of the lining of a melting furnace used, among other things, in the foundry industry. The article describes a comparative study of the influence of the type of moulding on the quality of the finished refractory product. A method for making products from refractory materials was proposed and a test methodology was developed. The results, based on a classic study of the quality of these materials, confirm a strong influence on the quality of the materials obtained in terms of reduced porosity and homogeneity of pore size.
Go to article

Authors and Affiliations

Alicja Trela
ORCID: ORCID
M. Brzeziński
1
ORCID: ORCID
A. Pribulova
2
ORCID: ORCID
Peter Futas
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Technical University, Department of Metallurgy, Kosice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Foamed concrete incorporating processed spent bleaching earth (PSBE) produces environmentally friendly foamed concrete. Compressive strength, porosity, and rapid chloride penetration tests were performed to investigate the potential application for building material due to its low density and porous concrete. Laboratory results show that 30% PSBE as cement replacement in foamed concrete produced higher compressive strength. Meanwhile, the porosity of the specimen produced by 30% PSBE was 45% lower than control foamed concrete. The porosity of foamed concrete incorporating PSBE decreases due to the fineness of PSBE that reduces the volume of void space between cement and fine aggregate. It was effectively blocking the pore and enhances the durability. Consistently, the positive effect of incorporating of PSBE has decreased the rapid chloride ion permeability compared to that control foamed concrete. According to ASTM C1202-19 the foamed concrete containing 30% PSBE was considered low moderate permeability based on its charge coulombs value of less than 4000. Besides, the high chloride ion permeability in foamed concrete is because the current quickly passes through the specimen due to its larger air volume. In conclusion, incorporating PSBE in foamed concrete generates an excellent pozzolanic effect, producing more calcium silicate hydrate and denser foamed concrete, making it greater, fewer voids, and higher resistance to chloride penetration.
Go to article

Authors and Affiliations

Rokiach Othman
1
Khairunisa Muthusamy
1
ORCID: ORCID
Mohd Arif Sulaiman
1
ORCID: ORCID
Youventharan Duraisamy
2
ORCID: ORCID
Ramadhansyah Putra Jaya
2
ORCID: ORCID
Chong Beng Wei
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3
ORCID: ORCID
Sajjad Ali Mangi
4
ORCID: ORCID
Marcin Nabiałek
5
ORCID: ORCID
Agata Śliwa
6
ORCID: ORCID

  1. Faculty of Civil Engineering Technology, University Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
  2. Department of Civil Engineering, College of Engineering, University Malaysia Pahang, 26300 Gambang,Pahang, Malaysia
  3. Center of Excellence Geopolymer and Green Technology, University Malayia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  4. Department of Civil Engineering, Mehran University of Engineering and Technology, SZAB Campus, Khairpur Mirs, Sindh 66020, Pakistan
  5. Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Czestochowa
  6. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In recent years, the application of pervious concrete (PC) in urban areas has expanded mainly due to its high potential for controlling and guiding surface waters and floods. However, its poor mechanical properties compared to conventional concrete hinder its widespread application and limit it to parking lots, sidewalks, and local streets. Therefore, identifying the parameters effective on PC’s physical and mechanical properties and durability could help resolve its weaknesses and enhance its performance. This review article investigated and discussed the PC’s performance properties and weaknesses and explore the solutions available for improving these properties. Based on a review of the literature, the solutions included the PC’s mix design basic property variations and the incorporation of various additives. The common mixture utilized in most studies contained a water-to-cement ratio of 0.25:0.35, resulting in compressive strength of 7–27 MPa, porosity of 15–35%, and permeability of 0.2–1.22 mm/s.
Go to article

Authors and Affiliations

Makan Pedram
1
ORCID: ORCID
Rahmat Madandoust
2
ORCID: ORCID
Mahyar Arabani
2
ORCID: ORCID

  1. Dept. of Civil Eng., Zanjan Branch, Islamic Azad University, Zanjan, I.R.Iran
  2. Dept. of Civil Eng., University of Guilan, Rasht, I.R.Iran

This page uses 'cookies'. Learn more