Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on the kinetics of the binding process of self-hardening moulding sands with an organic binder under conditions of forced air flow at various pressure values. Three moulding sands made using urea-furfuryl resin Furanol FR75A technology were studied. The moulding sands were prepared on a base of quartz sand with an average grain size of dL = 0.25, 0.29 and and 0.37 mm , with permeability values of 306 , 391 and and 476 m 2/10 8Pa ∙ s (for ρ0 = 1.60 , 1.60 and and 1.61 g/cm 3, respectively). The research was conducted for a resin content of 1% with a constant proportion of hardener to resin, which was equal to 50%. Samples of the tested moulding sands were blown with air at pressures of 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 bar. The kinetics of the hardening process was monitored using ultrasound technology, according to a previously developed methodology [1]. The research was carried out on an ultrasound testing station equipped with a temperature chamber and an airflow reducer. The tests were conducted at a temperature of 20°C, and of the air flow pressure on the changes in ultrasonic wave velocity in the hardening mouldins sand as a function of time, the kinetics of the hardening process, and the degree of moulding sand hardening were determined. Additionally, the influence of the moulding sand permeability on the course of the hardening process at a constant air flow pressure was determined.
Go to article

Bibliography

[1] Zych, J. (2007). Synthesis of the applications of ultrasonic technology in the analysis of the kinetics of selected processes occurring in molding materials. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne. Seria: Rozprawy i Monografie nr 163, Kraków. (in Polish).
[2] Holtzer, M., Kmita, A. & Roczniak, A. (2014). New furfuryl resins more environmentally friendly. Archives of Foundry Engineering. 14(spec.4), 51-54. (in Polish).
[3] Lewandowski, J.L. (1997). Materials for casting molds. Kraków: Wydawnictwo Akapit. (in Polish).
[4] Lewandowski, J.L (1971). Molding materials. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).
[5] Dobosz, St.M. (2006). Water in molding and core sands. Kraków: Wydawnictwo Akapit. (in Polish).
[6] Drożyński, D. (1999). Post-surface phenomena in the process of binding masses in the classic cold-box technology. Unpublished doctoral dissertation, AGH Univesity of Science and Technology, Kraków. (in Polish).
[7] Lewandowski, J.L. (1991). Molding and core sands. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).
[8] Jamrozowicz, Ł., Kolczyk, J. & Kaźnicva, N. (2016). Study of the hardening kinetics of self-hardening masses at low temperature. Prace Instytutu Odlewnictwa. LVI, 4/2016, 379-390. (in Polish).
[9] Matonis, N. & Zych, J. (2022). Plasticity changes of moulding sands with chemical binders caused by increasing the hardenin degree. Archives od Foundry Engineering. 22(2), 71-76. DOI: 10.24425/afe.2022.140227.
[10] Zych, J. (1999). Patent Nr PL 192202 B1. Kraków
Go to article

Authors and Affiliations

Natalia Matonis
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

Modern techniques of castings production, including moulding sands production, require a strict technological regime and high quality

materials. In the case of self-hardening moulding sands with synthetic binders those requirements apply mainly to sand, which adds to

more than 98% of the whole moulding sand mixture. The factors that affect the quality of the moulding sands are both chemical (SiO2

,

Fe2O3 and carbonates content) and physical. Among these factors somewhat less attention is paid to the granulometric composition of the

sands. As a part of this study, the effect of sand quality on bending strength Rgu

and thermal deformation of self-hardening moulding sands

with furfural and alkyd resin was assessed. Moulding sands with furfural resin are known [1] to be the most susceptible to the sand quality.

A negative effect on its properties has, among others, high content of clay binder and so-called subgrains (fraction smaller than 0,1mm),

which can lead to neutralization of acidic hardeners (in the case of moulding sands with furfuryl resin) and also increase the specific

surface, what forces greater amount of binding agents. The research used 5 different quartz sands originating from different sources and

characterized with different grain composition and different clay binder content.

Go to article

Authors and Affiliations

St.M. Dobosz
A. Grabarczyk
J. Jakubski
K. Major-Gabryś
Download PDF Download RIS Download Bibtex

Abstract

The presented in the paper investigations were aimed at the determination of the reclaimed material (obtained in the dry mechanical

reclamation process) addition influence on properties of moulding sands with hydrated sodium silicate modified by colloidal suspension

of zinc oxide nanoparticles in propanol. Nanoparticles originated from the thermal decomposition of alkaline zinc carbonate, were used.

The results of the reclamation of the spent moulding sand with hydrated sodium silicate performed in the AT-2 testing reclaimer are

presented in the paper. Both, spent sands from the Floster S technology and from the technology with the modified water-glass were

subjected to the reclamation processes. The following determinations of the reclaimed material were performed: pH reaction, acid demand,

ignition loss and Na2O content. The obtained reclaim was used as a matrix component of moulding sands with water-glass in the Floster S

technology, in which it constituted 60% and 50% of the sand matrix. The strength properties of the prepared moulding sands were

determined (bending strength Rg

u

, tensile strength Rm

u

) after samples storing times: 1h, 2h, 4h and 24 hours.

Go to article

Authors and Affiliations

J. Kamińska
A. Kmita
Download PDF Download RIS Download Bibtex

Abstract

The aim of the research was to determine the effect of the primary quality of reclaim from dry mechanical reclamation on the strength properties and service life of moulding sands based on this reclaim. Another aim was to establish the effect of the quality of reclaim, sulphur content - in particular, on the surface quality and thickness of the deformed surface layer in ductile iron castings. The research has revealed differences in the strength parameters and service life (mouldability) of sands based on the tested reclaims, depending on the type of the furfuryl resin used, including resins whose synthesis was done as part of the Żywfur project. Examinations of the structure of the surface layer of test castings poured in moulds made of loose self-hardening sands containing the addition of reclaim have confirmed the occurrence of degenerated spheroidal graphite in this part of the casting. It should be noted here that when massive castings with a long solidification time are made, the graphite degeneration effect can be more visible and the layer with the changed structure can increase in thickness. The research has clearly shown that it is necessary to control the parameters of the reclaim, including sulphur content which is transferred from the hardener and accumulates on the grains. This phenomenon has a negative impact not only on the sand strength and technological properties but also on the surface layer of castings.
Go to article

Bibliography

[1] Lewandowski, J.L. (1997). Materials for foundry moulds. Kraków: WN Akapit. ISBN: 83-7108-21-2 (in Polish).
[2] Kamińska, J., Puzio, S., Angrecki, M., Stachowicz, M. & Łoś, A. (2019). Preliminary tests of innovative eco-friendly furfuryl resins and foundry sand mixtures based on these resins. Journal of Ecological Engineering. 20(9), 285-292, DOI: 10.12911/22998993/112510.
[3] Acharya, S.G., Vadher, J.A. & Kanjariya, P.V. (2016). Identification and quantification of gases releasing from furan no bake binder. Archives of Foundry Engineering. 16(3), 5-10. DOI: 10.1515/afe-2016-0039.
[4] Chate, G.R., Patel, GC M., Deshpande, A.S. & Parappagoudar, M.B. (2018). Modeling and optimization of furan moulding sand system using design of experiments and particle swarm optimization. Journal of Process Mechanical Engineering. 232(5), 1-20. DOI: 10.1177/0954408917728636.
[5] Sappinen, T., Orkas, J. & Konqvist, T. (2018). Thermal Reclamation of Foundry Sands Using Repurposed Sand Dryer Equipment. Archives of Foundry Engineering. 18(4), 99-102. DOI: 10.24425/afe.2018.125176.
[6] Kamińska, J., Puzio, S., Angrecki, M. & Łoś, A. (2020). Effect of reclaim addition on the mechanical and technological properties of moulding sands based on pro-ecological furfuryl resin. Archives of Metallurgy and Materials. 65(4), 1425-1429. DOI: 10.24425/amm.2020.133709.
[7] Yan-lei, L., Guo-hua, W., Wen-cai, L., An-tao, C., Liang, Z. & Ying-xin Wang, W. (2017). Effect of reclaimed sand additions on mechanical properties and fracture behavior of furan no-bake resin sand. China Foundry. 14(2), 128-137. DOI: 10.1007/s41230-017-6024-3.
[8] Holtzer, M., Dańko, R., Kmita, A., Drożyński, D., Kubecki, M., Skrzyński, M. & Roczniak, A. (2020). Environmental impact of the reclaimed sand addition to moulding sand with furan and phenol-formaldehyde resin—A comparison, Materials. 13(19), 4395; DOI: https://doi.org/10.3390/ma13194395.
[9] Holtzer, M., Dańko, R. & Kmita, A. (2016). Influence of a reclaimed sand addition to moulding sand with furan resin on its impact on the environment. Water Air and Soil Pollution. 227(16), 1-12. DOI: 10.1007/s11270-015-2707-9.
[10] Hosadyna, M. (2012). The effect of sulphur contained in self-hardening moulding sands on the structure of surface layer in ductile iron castings. Doctoral dissertation, Kraków. (in Polish).
[11] Holtzer, M., Zych, J. & Retel, K. (1996). The effect of mould-liquid cast iron interaction on the surface quality of castings. Przegląd Odlewnictwa. 6(1996), 129-134. (in Polish).
[12] Riposan, I., Chisamera, M., Stan, S., Skaland, T. (2008). Surface graphite degeneration in ductile iron castings for resin molds. Tsinghua Science and Technology. 13(2), 157-163.
[13] Linke, T., Sluis, J.R. (1993). The influence of coatings on the graphite structure in the rim-zone of ductile iron castings. 60th World Foundry Congress, The Netherlands
[14] Hosadyna, M., Dobosz, St.M. & Jelinek, P. (2009). The diffusion of sulphur from moulding sand to cast and methods of its elimination. Archives of Foundry Engineering. 9(4), 73-76.
[15] Sheladiya, M.V., Acharya, S.G., Mehta, K., Acharya, G.D. (2019). Evaluate sulphur diffusion at mould-metal interface in no-bake mould system. Archives of Foundry Engineering. 19(1), 63-70. DOI: 10.24425/afe.2018.125193.
[16] Anca, D., Stan, I., Chisamera, M., Riposan, I. & Stan, S. (2021). Experimental study regarding the possibility of blocking the diffusion of sulfur at casting-mold interface in ductile iron castings. Coatings. 11(673), 1-10. DOI: https://doi.org/10.3390/coatings11060673.
[17] Dańko, J., Dańko, R. & Łucarz, M. (2007). Processes and devices for the matrix regeneration of spent molding sands. Kraków: WN Akapit. ISBN: 978-83-89541-88-8 (in Polish).
[18] Holtzer, M., Bobrowski, A., Drożyński, D., Isendorf, B., Mazur, (2012). Influence of the reclaim on the properties of moulding sands with furfuryl resin applied for moulds for manganese steel castings. Archives of Foundry Engineering. 12(1), 57-62.
[19] Dańko, R., Górny, M., Holtzer, M., Żymankowska-Kumon, S. (2014). Effect of the quality of furan moulding sand on the skin layer of ductile iron castings. ISIJ International. 54(6), 1288-1293. DOI: https://doi.org/10.2355/isijinternational.54.1288.
[20] Pałyga, Ł., Stachowicz, M., Granat, K. (2015). Evaluation of 2D and 3D surface roughness of die castings from alloy AlSi9Cu3. Archives of Foundry Engineering. 15(1), 75-80.

Go to article

Authors and Affiliations

J. Kamińska
1
ORCID: ORCID
M. Angrecki
1
ORCID: ORCID
S. Puzio
1
ORCID: ORCID
M. Stachowicz
2
ORCID: ORCID

  1. Łukasiewicz Research Network – Krakow Institute of Technology, Poland
  2. Wroclaw University of Technology, Faculty of Mechanical Engineering, Poland

This page uses 'cookies'. Learn more