Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, silicon carbide (SiC) reinforced lead-free solder (SAC305) was prepared by the powder metallurgy method. In this method SAC305 powder and SiC powder were milled, compressed and sintered to prepare composite solder. The composite solders were characterized by optical and scanning electron microscopy for the microstructural investigation and mechanical test. Addition of 1.5 wt. % and 2 wt. % ceramic reinforcement to the composite increased compressive strengths and microhardness up to 38% and 68% compared to those of the monolithic sample. In addition, the ceramic particles caused an up to 55% decrease in the wetting angle between the substrate and the composite solder and porosity was always increased with increase of SiC particles.

Go to article

Authors and Affiliations

Manoj Kumar Pal
G. Gergely
D. Koncz-Horvath
Z. Gacsi
Download PDF Download RIS Download Bibtex

Abstract

The presented work deals with the influence of the addition of soft graphite particles on the abrasive wear of composite reinforced with

hard SiC particles. The discussed hybrid composites were produced by stirring the liquid alloy and simultaneous adding the mixture of

particles. The adequately prepared suspension was gravity cast into a metal die. Both the composite castings obtained in this way and the

comparative castings produced of the pure matrix alloy were examined for the abrasive wear behaviour. Photomacrographs of the sliding

surfaces of the examined composites were taken, and also the hardness measurements were carried out. It was found that even a small

addition of Cgr particles influences positively the tribological properties of the examined composite materials, protecting the abraded

surface from the destructive action of silicon carbide particles. The work presents also the results of hardness measurements which confirm

that the composite material hardness increases with an increase in the volume fraction of hard reinforcing particles.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
Download PDF Download RIS Download Bibtex

Abstract

The gas-tungsten arc (GTA) welding behaviors of a magnesium matrix composite reinforced with SiC particles were examined in terms of

microstructure characteristics and process efficiencies. This study focused on the effects of the GTAW process parameters (like welding

current in the range of 100/200 A) on the size of the fusion zone (FZ). The analyses revealed the strong influence of the GTA welding

process on the width and depth of the fusion zone and also on the refinement of the microstructure in the fusion zone. Additionally, the

results of dendrite arm size (DAS) measurements were presented.

Go to article

Authors and Affiliations

E. Przełożyńska
M. Mróz
K.N. Braszczyńska-Malik
Download PDF Download RIS Download Bibtex

Abstract

There is growing interest in developing more advanced materials, as conventional materials are unable to meet the demands of the automotive, aerospace, and military industries. To meet the needs of these sectors, the use of advanced materials with superior properties, such as metal matrix composites, is essential. This paper discusses the evaluation of microstructural and mechanical properties of conventional eutectic EN AC-AlSi12CuNiMg aluminum alloy (AlSi12) and advanced composite based on EN AC-AlSi12CuNiMg alloy matrix with 10 wt% SiC particle reinforcement (AlSi12/10SiCp). The microstructure of these materials was investigated with the help of metallographic techniques, specifically using a light microscope (LM) and a scanning electron microscope (SEM). The results of the microstructural analysis show that the SiC particles are uniformly distributed in the matrix. The results of the mechanical tests indicate that the tensile properties and hardness of the AlSi12/10SiCp composite are significantly higher than those of the unreinforced eutectic alloy. For AlSi12/10SiCp composite, the tensile strength is 21% higher, the yield strength is 16% higher, the modulus of elasticity is 20% higher, and the hardness is 11% higher than unreinforced matrix alloy. However, the unreinforced AlSi12 alloy has a percentage elongation that is 16% higher than the composite material. This shows that the AlSi12/10SiCp composite has a lower ductility than the unreinforced AlSi12 alloy. The tensile specimens of the tested composite broke apart in a brittle manner with no discernible neck development, in contrast to the matrix specimens, which broke apart in a ductile manner with very little discernible neck formation.
Go to article

Bibliography


[1] Rashnoo, K., Sharifi, M. J., Azadi, M. & Azadi, M. (2020). Influences of reinforcement and displacement rate on microstructure, mechanical properties and fracture behaviors of cylinder-head aluminum alloy. Materials Chemistry and Physics. 255, 123441, 1-13. DOI: 10.1016/j.matchemphys.2020.123441.

[2] Azadi, M., Winter, G., Farrahi, G.H. & Eichlseder, W. (2015). Comparison between isothermal and non-isothermal fatigue behavior in a cast aluminum-silicon-magnesium alloy. Strength of Materials. 47(6), 840-848. DOI: 10.1007/s11223-015-9721-4.

[3] Aybarc, U., Dispinar, D. & Seydibeyoglu, M.O. (2018). Aluminum metal matrix composites with SiC, Al 2 O 3 and graphene–review. Archives of Foundry Engineering. 18(2), 5-10. DOI: 10.24425/122493.

[4] Arora, A., Astarita, A., Boccarusso, L. & Mahesh, V.P. (2016). Experimental characterization of metal matrix composite with aluminium matrix and molybdenum powders as reinforcement. Procedia Engineering. 167, 245-251. DOI: 10.1016/j.proeng.2016.11.694.

[5] Farokhpour, M., Parast, M.S.A. & Azadi, M. (2022). Evaluation of hardness and microstructural features in piston aluminum-silicon alloys after different ageing heat treatments. Results in Materials. 16, 100323, 1-11. DOI: 10.2139/ssrn.4162353.

[6] Sirata, G.G., Wacławiak, K. & Dyzia, M. (2022). Mechanical and Microstructural Characterization of aluminium alloy, EN AC-Al Si12CuNiMg. Archives of Foundry Engineering. 22(3), 34-40. DOI: 10.24425/afe.2022.140234.

[7] Kurzawa, A. & Kaczmar, J.W. (2017). Bending strength of EN AC-44200–Al2O3 composites at elevated temperatures. Archives of Foundry Engineering. 17(1), 103-108. DOI: 10.1515/afe-2017-0019.

[8] Lijay, K.J., Selvam, J.D.R., Dinaharan, I. & Vijay, S.J. (2016). Microstructure and mechanical properties characterization of AA6061/TiC aluminum matrix composites synthesized by in situ reaction of silicon carbide and potassium fluotitanate. Transactions of Nonferrous Metals Society of China. 26(7), 1791-1800. DOI: 10.1016/S1003-6326(16)64255-3.

[9] Lakshmipathy, J. & Kulendran, B. (2014). Reciprocating wear behavior of 7075Al/SiC in comparison with 6061Al/Al2O3 composites. International Journal of Refractory Metals and Hard Materials. 46, 137-144. DOI: 10.1016/j.ijrmhm.2014.06.007.

[10] Jayashree, P.K., Gowrishankar, M.C., Sharma, S., Shetty, R., Hiremath, P. & Shettar, M. (2021). The effect of SiC content in aluminum-based metal matrix composites on the microstructure and mechanical properties of welded joints. Journal of Materials Research and Technology. 12, 2325-2339. DOI: 10.1016/j.jmrt.2021.04.015.

[11] Dolata-Grosz, A., Dyzia, M., Śleziona, J. & Wieczorek, J. (2007). Composites applied for pistons. Archives of Foundry Engineering. 7(1), 37-40. ISSN (1897-3310).

[12] Moćko, W. & Kowalewski, Z.L. (2011). Mechanical properties of A359/SiCp metal matrix composites at wide range of strain rates. Applied Mechanics and Materials. 82, 166-171. https://doi.org/10.4028/www.scientific.net/ AMM.82.166.

[13] Dolata, A.J. & Dyzia, M. (2014). Effect of Chemical Composition of the Matrix on AlSi/SiC p+ C p Composite Structure. Archives of Foundry Engineering. 14(1), 135-138. ISSN (1897-3310).

[14] Wysocki, J., Grabian, J. & Przetakiewicz, W. (2007). Continuous drive friction welding of cast AlSi/SiC (p) metal matrix composites. Archives of Foundry Engineering. 7(1), 47-52. ISSN (1897-3310).

[15] Li, R., Pan, Z., Zeng, Q. & Xiaoli, Y. (2022). Influence of the interface of carbon nanotube-reinforced aluminum matrix composites on the mechanical properties–a review. Archives of Foundry Engineering. 22(1), 23-36. DOI: 10.24425/afe.2022.140213.

[16] Dolata, A.J., Mróz, M., Dyzia, M. & Jacek-Burek, M. (2020). Scratch testing of AlSi12/SiCp composite layer with high share of reinforcing phase formed in the centrifugal casting process. Materials. 13(7), 1685, 1-17. DOI: 10.3390/ma13071685.

[17] Pawar, P.B., & Utpat, A.A. (2014). Development of aluminium based silicon carbide particulate metal matrix composite for spur gear. Procedia Materials Science, 6, 1150-1156. DOI:10.1016/j.mspro.2014.07.187.

[18] Miracle, D.B. (2005). Metal matrix composites–from science to technological significance. Composites science and technology, 65(15-16), 2526-2540. DOI: 10.1016/j.compscitech.2005.05.027.

[19] Dyzia, M. (2017). Aluminum matrix composite (AlSi7Mg2Sr0. 03/SiCp) pistons obtained by mechanical mixing method. Materials. 11(1), 42, 1-14. DOI: 10.3390/ma11010042.

[20] Sahoo, B.P.,& Das, D. (2019). Critical review on liquid state processing of aluminium based metal matrix nano-composites. Materials Today: Proceedings. 19, 493-500. DOI: 10.1016/j.matpr.2019.07.642.

[21] Yar, A.A., Montazerian, M., Abdizadeh, H. & Baharvandi, H.R. (2009). Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. Journal of alloys and Compounds. 484(1-2), 400-404. DOI: 10.1016/j.jallcom.2009.04.117.

[22] Kumar, B.A. & Murugan, N. (2012). Metallurgical and mechanical characterization of stir cast AA6061-T6–AlNp composite. Materials & Design. 40, 52-58. DOI: 10.1016/j.matdes.2012.03.038.

[23] Peng, L.M., Han, K.S., Cao, J.W. & Noda, K. (2003). Fabrication and mechanical properties of high-volume-fraction Si3N4-Al-based composites by squeeze infiltration casting. Journal of Materials Science Letters. 22(4), 279-282. DOI: 1022356413756.

[24] Rajan, T.P.D., Pillai, R.M., & Pai, B.C. (2008). Centrifugal casting of functionally graded aluminium matrix composite components. International Journal of Cast Metals Research. 21(1-4), 214-218. DOI: 10.1179/136404608X361972.

[25] Chen, H.S., Wang, W.X., Li, Y.L., Zhang, P., Nie, H.H. & Wu, Q.C. (2015). The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites. Journal of Alloys and Compounds. 632, 23-29. DOI: 10.1016/j.jallcom.2015.01.048.

[26] Rohatgi, P.K. & Schultz, B. (2007). Lightweight metal matrix nanocomposites–stretching the boundaries of metals. Material Matters. 2(4), 16-20.

[27] Torralba, J.D., Da Costa, C.E. & Velasco, F. (2003). P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology. 133(1-2), 203-206. DOI: 10.1016/S0924-0136(02)00234-0.

[28] Suryanarayana, C. & Al-Aqeeli, N. (2013). Mechanically alloyed nanocomposites. Progress in Materials Science. 58(4), 383-502. DOI: 10.1016/j.pmatsci.2012.10.001.

[29] Taha, M.A. (2001). Practicalization of cast metal matrix composites (MMCCs). Materials & Design. 22(6), 431-441. DOI: 10.1016/S0261-3069(00)00077-7.

[30] Maurya, M., Maurya, N.K. & Bajpai, V. (2019). Effect of SiC reinforced particle parameters in the development of aluminium based metal matrix composite. Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy. 06(03), 200-206. DOI: 10.5109/2349295.

[31] Sharma, P., Sharma, S. & Khanduja, D. (2015). A study on microstructure of aluminium matrix composites. Journal of Asian Ceramic Societies. 3(3), 240-244. DOI: 10.1016/j.jascer.2015.04.001.

[32] Chandra, D., Chauhan, N. R. & Rajesha, S. (2020). Hardness and toughness evaluation of developed Al metal matrix composite using stir casting method. Materials Today: Proceedings. 25, 872-876. DOI: 10.1016/j.matpr.2019.12.026.

[33] Kaviyarasan, K., Kumar, J.P., Anandh, S.K., Sivavishnu, M. & Gokul, S. (2020). Comparison of mechanical properties of Al6063 alloy with ceramic particles. Materials Today: Proceedings. 22, 3067-3074. DOI: 10.1016/j.matpr.2020.03.442.

[34] Subramanya Reddy, P., Kesavan, R. & Vijaya Ramnath, B. (2017). Evaluation of mechanical properties of aluminum alloy (Al2024) reinforced with silicon carbide (SiC) metal matrix Composites. Solid State Phenomena. 263, 184-188. DOI: 10.4028/www.scientific.net/SSP.263.184.

[35] Nair, S.V., Tien, J.K. & Bates, R.C. (1985). SiC-reinforced aluminium metal matrix composites. International Metals Reviews. 30(1), 275-290. https://doi.org/10.1179/ imtr.1985.30.1.275.

[36] Ozben, T., Kilickap, E. & Cakır, O. (2008). Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of Materials Processing Technology. 198(1-3), 220-225. DOI: 10.1016/j.jmatprotec.2007.06.082.

[37] Ozden, S., Ekici, R. & Nair, F. (2007). Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A: Applied Science and Manufacturing. 38(2), 484-494. DOI: 10.1016/j.compositesa.2006.02.026.

[38] Shuvho, M.B.A., Chowdhury, M.A., Kchaou, M., Roy, B. K., Rahman, A. & Islam, M.A. (2020). Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections. 28, 100442. DOI: 10.1016/j.cdc.2020.100442.

[39] Peng, Z. & Fuguo, L. (2010). Effects of particle clustering on the flow behavior of SiC particle reinforced Al metal matrix composites. Rare Metal Materials and Engineering. 39(9), 1525-1531. DOI: 10.1016/S1875-5372(10)60123-3.

[40] Kurzawa, A. & Kaczmar, J.W. (2017). Impact strength of composite materials based on EN AC-44200 matrix reinforced with Al2O3 particles. Archives of Foundry Engineering. 17(3), 73-78. DOI: 10.1515/afe-2017-0094.

[41] Azadi, M., Bahmanabadi, H., Gruen, F. & Winter, G. (2020). Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment. Materials Science and Engineering: A. 788, 139497, 1-16. DOI: 10.1016/j.msea.2020.139497.

[42] Li, Y., Yang, Y., Wu, Y., Wang, L. & Liu, X. (2010). Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys. Materials Science and Engineering: A. 527(26), 7132-7137. DOI: 10.1016/j.msea.2010.07.073.

[43] Dolata, A.J., Dyzia, M. & Boczkal, S. (2016). Structure of interface between matrix alloy and reinforcement particles in Al/SiCp+ Cgp hybrid composites. Materials Today: Proceedings. 3(2), 235-239. DOI: 10.1016/j.matpr.2016.01.063.

[44] Keshavamurthy, R., Mageri, S., Raj, G., Naveenkumar, B., Kadakol, P.M. & Vasu, K. (2013). Microstructure and mechanical properties of Al7075-TiB2 in-situ composite. Research Journal of Material Sciences. 1(10), 6-10. ISSN 2320- 6055.

[45] Moustafa, S.F. (1995). Wear and wear mechanisms of Al-22% Si/A12O3f composite. Wear. 185(1-2), 189-195. DOI: 10.1016/0043-1648(95)06607-1.

Go to article

Authors and Affiliations

G.G. Sirata
1
ORCID: ORCID
K. Wacławiak
1
ORCID: ORCID
A.J. Dolata
1

  1. Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the mechanical properties and high-temperature sliding wear behaviour of the Al6082-SiC-TiO2 hybrid composite in different environmental conditions produced by the stir-casting process were investigated and distinguished with single-reinforced composites (Al6082-SiC and Al6082-TiO2) and matrix alloy. The microstructure of composites exhibited a reasonably uniform scatter of particles in the aluminium matrix with good bonding between the matrix-particle interfaces. The hybrid composite’s hardness and ultimate tensile strength showed higher hardness and tensile strength than matrix alloy and single-reinforced composites, whereas trends were reversed for the elongation. The impact test of the materials was conducted at different temperatures (room temperature, 0°C, –25°C, –50°C, and –75°C). The hybrid composite shows higher impact strength than the other materials, and impact strength decreases with temperature because ductility decreases with temperature. The fracture surfaces were examined to identify the fracture mechanism. The sliding wear test was conducted at different temperatures (room temperature, 100°C, 175°C, 250°C and 325°C) to distinguish the tribological behaviour of materials. The weight loss of the materials was increased with an increase in temperatures. The hybrid composite shows a lower weight loss than the other condition samples, irrespective of the temperatures. The wear surfaces were examined to predict the material removal mechanism.
Go to article

Authors and Affiliations

Pushpraj Singh
1
ORCID: ORCID
Raj Kumar Singh
2 3
ORCID: ORCID
Anil Kumar Das
1
ORCID: ORCID

  1. National Institute of Technology, Department of Mechanical Engineering, Ashok Rajpath, Mahendru, Patna, Bihar, 800005, India
  2. University Road, Department of Mechanical Engineering, Rewa Engineering College, Rewa, Madhya Pradesh, 486002, India
  3. Vindya Institute of Technology and Science, Mechanical Engineering, Amaudha Kalan, SATNA, MADHYA PRADESH, 485001, India

This page uses 'cookies'. Learn more