Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Describes how to obtain a soluble sodium silicate with a density of 1.40 g/cm3, 1.45 g/cm3, 1.50 g/cm3, and silica module M = 2.1 obtained from the silica- sodium glass with module M = 3.3 and M = 2.1. Residual (final) strength of molding samples made with these binders, were determined at temperatures corresponding to the characteristic temperatures of phase and temperature transitions of silica gel. Indicated the type of soluble sodium silicate capable of obtain the smallest value of the final strength of molding sand in the specified range of temperatures.

Go to article

Authors and Affiliations

A. Baliński
Download PDF Download RIS Download Bibtex

Abstract

Sodium silicate is one of the most successful inorganic binder. Along with the broad application of sodium silicate for domestic and industrial purposes, the composition analysis, include modulus (m), ratio of SiO2:Na2O, Na2O%, SiO2%, and solid-containing content, is important for the products strength and service life. However, it is perplexing to operate, inefficient and low precision for traditional standard testing method of these parameters. In this study, an automatic measurement system of sodium silicate composition analysis, with the potential electrode for potentiometer titration, micro-controller, PCB, heater, stirrer, printer and micro peristaltic pump, was developed according to the determine method principle. The end-points of pH value in the two titrating steps, first was 4.3 and second was 6.0, were set in the micro-controller to control the reaction in the processing of the sodium silicate composition analysis. And all the potential signals of the pH electrode were transited in the special PCB for the micro-controller.
Go to article

Bibliography

[1] Rabbii, A. (2001). Sodium silicate glass as an inorganic binder in foundry industry. Iranian Polymer Journal. 10(4), 229-235.
[2] Stachowicz, M., Pałyga, Ł.& Kȩpowicz, D. (2020). Influence of automatic core shooting parameters in hot-box technology on the strength of sodium silicate olivine moulding sands. Archives of Foundry Engineering. 20(1), 67-72.
[3] Huafang, W., Wenbang, G. & Jijun, L. (2014). Improve the humidity resistance of sodium silicate sands by estermicrowave composite hardening. Metalurgija. 53(4), 455-458.
[4] Nowak, D. (2017). The impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. Archives of Foundry Engineering. 17(4), 115-118.
[5] M. Stachowicz, K. Granat, & D. Nowak. (2011). Application of microwaves for innovative hardening of environment-friendly water-glass moulding sands used in manufacture of cast-steel castings. Archives of Civil and Mechanical Engineering. XI(1), 209-219.
[6] Zhu, CX. (2007). Recent advances in waterglass sand technologies. China Foundry. 4(1), 13-17.
[7] Masuda Yuki, Tsubota Keiji, Ishii Kenichi, Imakoma Hironobu, Ohmura Naoto. (2009) Drying rate and surface temperature in solidification of glass particle layer with inorganic binder by microwave drying. Kagaku Kogaku Ronbunshu. 35(2). 229-231.
[8] Standardization Administration of the P.R.C. (2008). GB/T4209-2008, Sodium silicate for industry use[S]. Beijing, China Standard Press.
[9] Bourikas K., Kordulis C. & Lycourghiotis A. (2005). Differential potentiometric titration: Development of a methodology for determining the point of zero charge of metal (Hydr)oxides by one titration curve. Environmental Science & Technology. 39(11), 4100-4108.
[10] Fan ZT, Liu M, Wang HF, Long W, Hu XT. (2010). Chinese Patent No. 201010558029.3. Beijing, China National Intellectual Property Administration.
Go to article

Authors and Affiliations

Huafang Wang
1
ORCID: ORCID
Quanrun Wang
1
Wu Zhang
1
Xiang Gao
1
Jijun Lu
1
ORCID: ORCID

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of preliminary research on the use of silica sands with hydrated sodium silicate 1.5% wt. of binder for the performance of eco-friendly casting cores in hot-box technology. To evaluate the feasibility of high quality casting cores performed by the use of this method, the tests were made with the use of a semiautomatic core shooter using the following operating parameters: initial shooting pressure of 6 bar, shot time 4 s and 2 s, core-box temperature 200, 250 and 300 °C and core heating time 30, 60, 90 and 150 s. Matrixes of the moulding sands were two types of high-silica sand: fine and medium. Moulding sand binder was a commercial, unmodified hydrated sodium silicate having a molar module SiO2/Na2O of 2.5. In one shot of a core-shooter were made three longitudinal samples (cores) with a total volume of about 2.8 dm3. The samples thus obtained were subjected to an assessment of the effect of shooting parameters, i.e. shooting time, temperature and heating time, using the criteria: core-box fill rate, bending strength (RgU), apparent density and surface quality after hardening. The results of the trials on the use of sodium silicate moluding sands made it possible to further refine the conditions of next research into the improvement of inorganic warm-box/hot-box technology aimed at: reduction of heating temperature and shot time. It was found that the performance of the cores depends on the efficiency of the venting system, shooting time, filling level of a shooting chamber and grains of the silica matrix used.

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
P. Obuchowski
Download PDF Download RIS Download Bibtex

Abstract

In the paper, a research on effects of baking temperature on chromite sand base of moulding sands bonded with sodium silicate is

presented. Pure chromite sand and its chromite-based moulding sand prepared with use of sodium silicate were subjected to heating within

100 to 1200 °C. After cooling-down, changes of base grains under thermal action were determined. Chromite moulding sand was prepared

with use of 0.5 wt% of domestic made, unmodified sodium silicate (water-glass) grade 145. After baking at elevated temperatures, creation

of rough layer was observed on grain surfaces, of both pure chromite sand and that used as base of a moulding sand. Changes of sand

grains were evaluated by scanning microscopy and EDS analyses. It was found that changes on grain surfaces are of laminar nature. The

observed layer is composed of iron oxide (II) that is one of main structural components of chromite sand. In order to identify changes in

internal structure of chromite sand grains, polished sections were prepared of moulding sand hardened with microwaves and baked at

elevated temperatures. Microscopic observations revealed changes in grains structure in form of characteristically crystallised acicular

particles with limited magnesium content, intersecting at various angles. EDS analysis showed that these particles are composed mostly of

chromium oxide (III) and iron oxide (II). The temperature above that the a.m. changes are observed in both chromite-based moulding sand

and in pure chromite sand. The observed phenomena were linked with hardness values and mass of this sand.

Go to article

Authors and Affiliations

M. Stachowicz
M. Kamiński
K. Granat
Ł. Pałyga
Download PDF Download RIS Download Bibtex

Abstract

Moulding sands containing sodium silicate (water-glass) belong to the group of porous mixture with low resistance to increased humidity.

Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous

reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder), moulds and foundry cores made of

high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained

steam. This paper presents results of a research on the effect of (relative) humidity on mechanical and technological properties of

microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5

were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of

water in atmospheric air was stabilized for 28 days (672 h) according to the relative humidity parameter that was ca. 40%, 60% and 80% at

constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h) and

their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and

cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam) intensifies action of the air

components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a longterm

basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the

air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores

stored in specified, controlled conditions could be still used in manufacture.

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

In the paper, a research on effects of baking temperature on chromite sand base of moulding sands bonded with sodium silicate is

presented. Pure chromite sand and its chromite-based moulding sand prepared with use of sodium silicate were subjected to heating within

100 to 1200 °C. After cooling-down, changes of base grains under thermal action were determined. Chromite moulding sand was prepared

with use of 0.5 wt% of domestic made, unmodified sodium silicate (water-glass) grade 145. After baking at elevated temperatures, creation

of rough layer was observed on grain surfaces, of both pure chromite sand and that used as base of a moulding sand. Changes of sand

grains were evaluated by scanning microscopy and EDS analyses. It was found that changes on grain surfaces are of laminar nature. The

observed layer is composed of iron oxide (II) that is one of main structural components of chromite sand. In order to identify changes in

internal structure of chromite sand grains, polished sections were prepared of moulding sand hardened with microwaves and baked at

elevated temperatures. Microscopic observations revealed changes in grains structure in form of characteristically crystallised acicular

particles with limited magnesium content, intersecting at various angles. EDS analysis showed that these particles are composed mostly of

chromium oxide (III) and iron oxide (II). The temperature above that the a.m. changes are observed in both chromite-based moulding sand

and in pure chromite sand. The observed phenomena were linked with hardness values and mass of this sand.

Go to article

Authors and Affiliations

M. Stachowicz
M. Kamiński
K. Granat
Ł. Pałyga
Download PDF Download RIS Download Bibtex

Abstract

In the paper, presented is a research on effectiveness of absorbing electromagnetic waves at frequency 2.45 GHz by unhardened moulding

sands prepared of three kinds of high-silica base and a selected grade of sodium silicate. Measurements of power loss of microwave

radiation (Pin) expressed by a total of absorbed power (Pabs), output power (Pout) and reflected power (Pref) were carried-out on a stand of

semiautomatic microwave slot line. Values of microwave power loss in the rectangular waveguide filled with unhardened moulding sands

served for determining effectiveness of microwave heating. Balance of microwave power loss is of technological and economical

importance for manufacture of high-quality casting moulds and cores of various shapes and sizes. It was found that relative density

influences parameters of power output and power reflected from samples of moulding sand placed in a waveguide. Absorption expressed

by the parameter Pabs is not related to granularity of high-silica base: fine, medium and coarse. It was found that the semiautomatic

microwave slot line supports evaluation of effectiveness of microwave absorption on the grounds of power loss measurements and enables

statistic description of influence of relative density of the sandmix on penetration of electromagnetic waves in unhardened moulding sands.

Go to article

Authors and Affiliations

M. Stachowicz
Download PDF Download RIS Download Bibtex

Abstract

The sodium silicate sands hardened by microwave have the advantages of high strength, fast hardening speed and low residual strength with the lower addition of sodium silicate. However, the sodium ion in the sands will absorb moisture from the atmosphere, which would lead to lower storing strength, so the protection of a bonding bridge of sodium silicate between the sands is crucial. Methyl silicone oil is a cheap hydrophobic industrial raw material. The influence of the addition amount of methyl silicone oil modifier on compressive strength and moisture absorption of sodium silicate sands was studied in this work. The microscopic analysis of modified before and after sodium silicate sands has been carried on employing scanning electron microscopy(SEM) and energy spectrum analysis(EDS). The results showed that the strength of modified sodium silicate sands was significantly higher than that of unmodified sodium silicate sands, and the best addition of methyl silicone oil in the quantity of sodium silicate was 15%. It was also found that the bonding bridge of modified sodium silicate sands was the density and the adhesive film was smooth, and the methyl silicone oil was completely covered on the surface of the sodium silicate bonding bridge to protect it.
Go to article

Bibliography

[1] Stachowicz, M., Pałyga, Ł. & Kȩpowicz, D. (2020). Influence of automatic core shooting parameters in hot-box technology on the strength of sodium silicate olivine moulding sands. Archives of Foundry Engineering. 20(1), 67-72.
[2] Nowak, D.(2017).The impact of microwave penetration depth on the process of hardening the moulding sand with sodium silicate. Archives of Foundry Engineering. 17(4), 115-118.
[3] Gal, B., Granat, K. & Nowak, D. (2017). Effect of compaction degree on permittivity of water-glass containing moulding sand. Metalurgija. 56(1), 17-20.
[4] Kaźnica, N. & Zych, J. (2019). Indicator wso: a new parameter for characterization of protective coating efficiency against humidity. Journal of Materials Engineering and Performance. 28(7), 3960-3965.
[5] Bae, M.A., Lee, M.S. & Baek, J.H. (2020). The effect of the surface energy of water glass on the fluidity of sand. Journal of Korean Institute of Metals and Materials. 58(5), 319-325.
[6] Peng, Q.S., Wang, P.C., Huang, W., & Chen, H.B. (2020). The irradiation-induced grafting of nano-silica with methyl silicone oil. Polymer. 192(4), 122315.
[7] Stachowicz, M., Granat, K., & Payga. (2017). Influence of sand base preparation on properties of chromite moulding sands with sodium silicate hardened with selected methods. Archives of Metallurgy and Materials. 62(1), 379-383.
[8] Zhu, C. (2007). Recent advances in waterglass sand technologies. China Foundry. 4(1), 13-17.
[9] Huafang, W., Wenbang, G. & Jijun, L. (2014). Improve the humidity resistance of sodium silicate sands by ester-microwave composite hardening. Metalurgija. 53(4), 455-458.
[10] Masuda, Y., Tsubota, K., Ishii, K., Imakoma, H. & Ohmura, N. (2009). Drying rate and surface temperature in solidification of glass particle layer with inorganic binder by microwave drying. KAGAKU KOGAKU RONBUNSHU. 35(2), 229-231.
[11] Kosuge, K., Sunaga, M., Goda, R., Onodera, H. & Okane, T. (2018). Cure and collapse mechanism of inorganic mold using spherical artificial sand and water glass binder. Materials transactions. 59(11), 1784-1790.
[12] Zhang, Y.H., Liu, Z.Y., Liu, Z.C. & Yao, L.P. (2020). Mechanical properties of high-ductility cementitious composites with methyl silicone oil. Magazine of Concrete Research. 72(14), 747-756.
Go to article

Authors and Affiliations

Huafang Wang
1
ORCID: ORCID
Xiang Gao
1
Lei Yang
1
ORCID: ORCID
Wei He
1
Jijun Lu
1
ORCID: ORCID

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of preliminary research on the application of olivine moulding sands with hydrated sodium silicate containing 1.5 % wt. of binder to perform ecological casting cores in hot-box technology using a semi-automatic core shooter. The following parameters were used in the process of core shooting: initial shot pressure of 6 bar, shot time 3 s, the temperature of the corebox: 200, 250 and 300 °C and the core curing time: 30, 60, 90, 120 and 150 s. The matrix of the moulding mixture was olivine sand, and the binder of the sandmix was commercial, unmodified hydrated sodium silicate with molar module SiO2/Na2O of 2.5. In one shot of the automatic core-shooter were formed three longitudinal specimens (cores) with a dimensions 22.2×22.2×180 mm. The samples obtained in this way were subjected to the assessment of the influence of the shooting parameters, i.e. shooting time, temperature and curing time in core-box, using the following criteria: core box fill rate, mechanical strength to bending Rg U, apparent density, compaction degree and susceptibility to friability of sand grains after hardening. The results of trials on the use of olivine moulding sands with hydrated sodium silicate (olivine SSBS) in the process of core shooting made it possible to determine the conditions for further research on the improvement of inorganic hot-box process technology aimed at: reduction of the heating temperature and the curing time. It was found that correlation between the parameters of the shooting process and the bending strength of olivine moulding sands with sodium silicate is observed.

Go to article

Authors and Affiliations

M. Stachowicz
ORCID: ORCID
Ł. Pałyga
D. Kępowicz
Download PDF Download RIS Download Bibtex

Abstract

In the paper presented are results of a research on effectiveness of absorbing electromagnetic waves at frequency 2.45 GHz by unhardened sodium silicate base sands (SSBS) prepared of high-silica base sand and a PLA (Polylactide) 3D-prited (3DP) mould walls. Measurements of power loss of microwave radiation (P in) expressed by a total of absorbed power (P abs), output power (P out) and reflected power (P ref) were carried-out on a stand of semiautomatic microwave slot line for determining balance of microwave power emitted into selected multimaterial systems. Values of microwave power loss in the rectangular waveguide filled with unhardened moulding sands and prepared by fused deposition modelling (FDM) 5 mm polylactide (PLA) walls with grid infill density from 25% to c.a. 100% served for determining effectiveness of microwave heating. Balance of microwave power loss is of technological importance for microwave manufacture of high-quality casting sand moulds and cores in possibility of use 3D-printed mould tools and core boxes. It was found that apparent density of SSBS placed in a waveguide with PLA walls influences parameters of power output (P out) and power reflected (P ref). The PLA wall position and grid infill density were identified to have a limited effect on effectiveness of absorbing microwaves (P abs).
Go to article

Authors and Affiliations

M. Stachowicz
1
ORCID: ORCID

  1. Wroclaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this research, the effect of sodium silicate (Na2SiO3) on the geopolymerization of fly ash type F (low calcium) has been studied. The variations of Na2SiO3 used in the synthesized geopolymers were 19, 32, and 41wt%. The fly ash from three different power plant sources was characterized using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Particle Size Analyzer (PSA), and Scanning Electron Microscopy (SEM). Fly ash-based geopolymers were tested for mechanical strength and setting time. The best geopolymer was obtained by adding 32% Na2SiO3, produced a compressive strength of 21.62 MPa with a setting time of 30 hours. Additions of 19wt% Na2SiO3 failed to form geopolymer paste while the addition of 41wt% Na2SiO3 decreased the mechanical strength of the geopolymer. Higher calcium content in low calcium fly ash produces stronger geopolymer and faster setting time.
Go to article

Bibliography

[1] Y . Zhang, R. Xiao, X. Jiang, W. Li, X. Zhu, B. Huang, J. Cleaner. Prod. 273, 122970 (2020). DOI : https://doi.org/10.1016/j.jclepro.2020.122970
[2] İ.İ. Atabey, O. Karahan, C. Bilim, C.D. Atiş, Constr. Build. Mater. 264 (2020). DOI : https://doi.org/10.1016/j.conbuildmat.2020.120268
[3] C.L. Wong, K.H. Mo, U.J. Alengaram, S.P. Yap, J. Build. Eng. 32 101655 (2020). DOI : https://doi.org/10.1016/j.jobe.2020.101655
[4] A. Abdullah, K. Hussin, M.M.A.B. Abdullah, Z. Yahya, W. Sochacki, R.A. Razak, K. Błoch, H. Fansuri, Materials 14, 1111 (2021). DOI: https://doi.org/10.3390/ma14051111
[5] Y .S. Wang, Y. Alrefaei, J.G. Dai, Cem. Concr. Res. 127, 105932 (2020). DOI : https://doi.org/10.1016/j.cemconres.2019.105932
[6] F. Demir, E. Moroydor Derun, J. Non-Cryst. Solids. 524, 119649 (2019). DOI: https://doi.org/10.1016/j.jnoncrysol.2019.119649
[7] S. Top, H. Vapur, M. Altiner, D. Kaya, A. Ekicibil, J. Mol. Struct. 1202, 127236 (2020). DOI : https://doi.org/10.1016/j.molstruc.2019.127236
[8] O .H. Li, L. Yun-Ming, H. Cheng-Yong, R. Bayuaji, M.M.A.B. Abdullah, F.K. Loong, T.A. Jin, N.H. Teng, M. Nabiałek, B. Jeż, N.Y. Sing, Magnetochemistry 7 (1), 9 (2021). DOI : https://doi.org/10.3390/magnetochemistry7010009
[9] W.W.A. Zailani, M.M.A.B. Abdullah, M.F. Arshad, R.A. Razak, M.F.M. Tahir, R.R.M.A. Zainol, M. Nabialek, A.V. Sandu, J.J. Wysłocki, K. Błoch, Materials 14, 56 (2021). DOI : https://doi.org/10.3390/ma14010056
[10] M .A. Faris, M.M.A.B. Abdullah, R. Muniandy, M.F. Abu Hashim, K. Błoch, B. Jeż, S. Garus, P. Palutkiewicz, N.A. Mohd Mortar, M.F. Ghazali, Materials 14, 1310 (2021). DOI : https://doi.org/10.3390/ma14051310
[11] P. Zhang, Z. Gao, J. Wang, J. Guo, S. Hu, Y. Ling, J. Cleaner Prod. 270 122389 (2020). DOI : https://doi.org/10.1016/j.jclepro.2020.122389
[12] K .U. Ambikakumari Sanalkumar, M. Lahoti, E.H. Yang, Constr. Build. Mater. 225, 283-291 (2019). DOI : https://doi.org/10.1016/j.conbuildmat.2019.07.140
[13] D . Panias, I.P. Giannopoulou, T. Perraki, Colloids Surf. A. 301, 246-254 (2007). DOI : https://doi.org/10.1016/j.colsurfa.2006.12.064
[14] A .M. Kaja, A. Lazaro, Q.L. Yu, Constr. Build. Mater. 189, 1113- 1123 (2018). DOI : https://doi.org/10.1016/j.conbuildmat.2018.09.065
[15] M .N.S. Hadi, M. Al-Azzawi, T. Yu, Constr. Build. Mater. 175, 41-54 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.092
[16] X.Y. Zhuang, L. Chen, S. Komarneni, C.H. Zhou, D.S. Tong, H.M. Yang, W.H. Yu, H. Wang, J. Cleaner Prod. 125, 253-267 (2016). DOI: https://doi.org/10.1016/j.jclepro.2016.03.019.
[17] T . Hemalatha, A. Ramaswamy, J. Cleaner Prod. 147, 546-559 (2017). DOI: https://doi.org/10.1016/j.jclepro.2017.01.114
[18] C. Belviso, Prog. Energy Combust. Sci. 65, 109-135 (2018). DOI : https://doi.org/10.1016/j.pecs.2017.10.004
[19] R.E. Hidayati, G.R. Anindika, F.S. Faradila, C.I.B. Pamungkas, I. Hidayati, D. Prasetyoko, H. Fansuri, IOP Conf. Ser. Mater. Sci. Eng. Sci. Eng. 864 (2020). DOI : https://doi.org/10.1088/1757-899X/864/1/012017.
[20] J .G. Jang, H.K. Lee, Constr. Build. Mater. 102, 260-269 (2016). DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.172
[21] H. Fansuri, N. Swastika, L. Atmaja, Akta Kimindo 3, 61-66 (2008).
[22] P. Rożek, M. Król, W. Mozgawa, Spectrochim. Acta – Part A. 198, 283-289 (2018). DOI: https://doi.org/10.1016/j.saa.2018.03.034
[23] V . Gupta, D.K. Pathak, S. Siddique, R. Kumar, S. Chaudhary, Constr. Build. Mater. 235, 117413 (2020). DOI : https://doi.org/10.1016/j.conbuildmat.2019.117413
[24] A . Mehta, R. Siddique, Constr. Build. Mater. 150, 792-807 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.067.
[25] S.K. Nath, S. Kumar, Constr. Build. Mater. 233, 117294 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2019.117294
[26] A . De Rossi, M.J. Ribeiro, J.A. Labrincha, R.M. Novais, D. Hotza, R.F.P.M. Moreira, Process Saf. Environ. Prot. 129, 130-137 (2019). DOI: https://doi.org/10.1016/j.psep.2019.06.026
[27] L .N. Assi, E. Eddie Deaver, P. Ziehl, Constr. Build. Mater. 167, 372-380 (2018). DOI : https://doi.org/10.1016/j.conbuildmat.2018.01.193
[28] D .-W. Zhang, D. Wang, Z. Liu, F. Xie, Constr. Build. Mater. 187, 674-680 (2018). DOI: https://doi.org/10.1016/j.conbuildmat. 2018.07.205
[29] P. Risdanareni, P. Puspitasari, E. Januarti Jaya, MAT EC Web Conf. 97 (2017). DOI : https://doi.org/10.1051/matecconf/20179701031
[30] B .G. Kutchko, A.G. Kim, Fuel. 85, 2537-2544 (2006). DOI : https://doi.org/10.1016/j.fuel.2006.05.016
[31] W.W.A. Zailani, A. Bouaissi, M.M. Al Bakri Abdullah, R. Abd Razak, S. Yoriya, M.A.A. Mohd Salleh, M.A.Z. Mohd Remy Rozainy, H. Fansuri, Appl. Sci. 10, 1-14 (2020). DOI : https://doi.org/10.3390/app10093321
[32] D .D. Burduhos Nergis, P. Vizureanu, L. Andrusca, D. Achitei, IOP Conference Series: Materials Science and Engineering. 572, 012026 (2019). DOI : https://doi.org/10.1088/1757-899X/572/1/012026
[33] D .D. Burduhos Nergis, P. Vizureanu, I. Ardelean, A.V. Sandu, O. Corbu, E. Matei, Materials 13, 3211 (2020). DOI : https://doi.org/10.3390/ma13020343
[34] D .W. Zhang, D.M. Wang, F.Z. Xie, Constr. Build. Mater. 207, 284-290 (2019). DOI : https://doi.org/10.1016/j.conbuildmat.2019.02.149
[35] L .H. Buruberri, D.M. Tobaldi, A. Caetano, M.P. Seabra, J.A. Labrincha, Elsevier Ltd, 2019. DOI : https://doi.org/10.1016/j.jobe.2018.11.017
[36] H. Fansuri, D. Prasetyoko, Z. Zhang, D. Zhang, Asia-Pac. J. Chem. Eng. 7 (1), 73-79 (2012). DOI: https://doi.org/10.1002/apj.493
Go to article

Authors and Affiliations

Ririn Eva Hidayati
1
Fitria Sandi Faradilla
1
Dadang Dadang
1
Lia Harmelia
1
Nurlina Nurlina
2
Didik Prasetyoko
1
Hamzah Fansuri
1

  1. Institut Teknologi Sepuluh Nopember, Department of Chemistry, Faculty of Science and Data Anlytics , Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  2. Universitas Tanjungpura, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Pontianak 78111, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The necessity of obtaining high quality castings forces both researchers and producers to undertake research in the field of moulding sands. The key is to obtain moulding and core sands which will ensure relevant technological parameters along with high environmental standards. The most important group in this research constitutes of moulding sands with hydrated sodium silicate. The aim of the article is to propose optimized parameters of hardening process of moulding sands with hydrated sodium silicate prepared in warm-box technology. This work focuses on mechanical and thermal deformation of moulding sands with hydrated sodium silicate and inorganic additives prepared in warm-box technology. Tested moulding sands were hardened in the temperature of 140oC for different time periods. Bending strength, thermal deformation and thermal degradation was tested. Chosen parameters were tested immediately after hardening and after 1h of cooling. Conducted research proved that it is possible to eliminate inorganic additives from moulding sands compositions. Moulding sands without additives have good enough strength properties and their economic and ecological character is improved.
Go to article

Authors and Affiliations

K.A. Major-Gabryś
S.M. Dobosz
A.P. Grabarczyk
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the impact of biodegradable material - polycaprolactone (PCL) on selected properties of moulding sands. A self-hardening moulding sands with phenol-furfuryl resin, which is widely used in foundry practice, and an environmentally friendly self-hardening moulding sand with hydrated sodium silicate where chosen for testing. The purpose of the new additive in the case of synthetic resin moulding sands is to reduce their harmfulness to the environment and to increase their “elasticity” at ambient temperature. In the case of moulding sands with environmentally friendly hydrated sodium silicate binder, the task of the new additive is to increase the elasticity of the tested samples while preserving their ecological character. Studies have shown that the use of 5% PCL in moulding sand increases their flexibility at ambient temperature, both with organic and inorganic binders. The influence of the new additive on the deformation of the moulding sands at elevated temperatures has also been demonstrated.
Go to article

Authors and Affiliations

A. Grabarczyk
S.M. Dobosz
K. Major-Gabryś
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to demonstrate the possibility of using moulds made from the environmentally friendly sands with hydrated sodium silicate in modified ablation casting. The ablation casting technology is primarily intended for castings with diversified wall thickness and complex shapes made in sand moulds. The article presents the effect of binder content and hardening time on the bending strength Rg u of moulding sands with binders based on hydrated sodium silicate hardened by microwave technology. The aim of the research was to develop an optimal sand composition that would provide the strength necessary to make a mould capable of withstanding the modified ablation casting process. At the same time, the sand composition should guarantee the susceptibility of the mould to the destructive action of the ablation medium, which in this case is water. Tests have shown that microwave hardening provides satisfactory moulds’ strength properties even at a low binder content in the sand mixture.

Go to article

Authors and Affiliations

S. Puzio
J. Kamińska
K. Major-Gabryś
M. Angrecki
M. Hosadyna-Kondracka
Download PDF Download RIS Download Bibtex

Abstract

The presented in the paper investigations were aimed at the determination of the reclaimed material (obtained in the dry mechanical

reclamation process) addition influence on properties of moulding sands with hydrated sodium silicate modified by colloidal suspension

of zinc oxide nanoparticles in propanol. Nanoparticles originated from the thermal decomposition of alkaline zinc carbonate, were used.

The results of the reclamation of the spent moulding sand with hydrated sodium silicate performed in the AT-2 testing reclaimer are

presented in the paper. Both, spent sands from the Floster S technology and from the technology with the modified water-glass were

subjected to the reclamation processes. The following determinations of the reclaimed material were performed: pH reaction, acid demand,

ignition loss and Na2O content. The obtained reclaim was used as a matrix component of moulding sands with water-glass in the Floster S

technology, in which it constituted 60% and 50% of the sand matrix. The strength properties of the prepared moulding sands were

determined (bending strength Rg

u

, tensile strength Rm

u

) after samples storing times: 1h, 2h, 4h and 24 hours.

Go to article

Authors and Affiliations

J. Kamińska
A. Kmita
Download PDF Download RIS Download Bibtex

Abstract

The ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. The following paper focuses on the selection of moulding sands with hydrated sodium silicate technologies for moulds devoted to the ablation casting of aluminum alloys. It has been proposed to use different types of moulding sands with a water-soluble binder, which is hydrated sodium silicate. The authors showed that the best kind of moulding sands for moulds for Al alloy casting will be moulding sands hardened with physical factors – through dehydration. The use of microwave hardened moulding sands and moulding sands made in hot-box technology has been proposed. The tests were carried out on moulding sands with different types of modified binder and various inorganic additives. The paper compares viscosity of different binders used in the research and thermal degradation of moulding sands with tested binders. The paper analyzes the influence of hardening time periods on bending strength of moulding sands with hydrated sodium silicate prepared in hot-box technology. The analysis of literature data and own research have shown that molding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties for the ablation foundry of Al alloys.

Go to article

Authors and Affiliations

K. Major-Gabryś
M. Hosadyna-Kondracka
A. Grabarczyk
J. Kamińska
Download PDF Download RIS Download Bibtex

Abstract

The ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and water-soluble binder. After pouring the mould with liquid metal the mould is destructed (washed out) using a stream of cooling medium, which in this case is water. The process takes place while the casting is still solidifying.

The following paper focuses on testing the influence of the modified ablation casting of aluminum alloy on casts properties produced in moulds with hydrated sodium silicate binder. The authors showed that the best kind of moulding sands for Al alloy casting will be those hardened with physical factors – through dehydration. The analysis of literature data and own research have shown that the moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties for the modified ablation casting of Al alloys. In the paper the use of microwave hardened moulding sands has been proposed.

The moulds were prepared in the matrix specially designed for this technology. Two castings from the AlSi7Mg alloy were made; one by traditional gravity casting and the other by gravity casting using ablation.

The conducted casts tests showed that the casting made in modified ablation casting technology characterizes by higher mechanical properties than the casting made in traditional casting technology. In both experimental castings the directional solidification was observed, however in casting made by ablation casting, dimensions of dendrites in the structure at appropriate levels were smaller.

Go to article

Authors and Affiliations

K. Major-Gabryś
ORCID: ORCID
M. Hosadyna-Kondracka
ORCID: ORCID
S. Puzio
ORCID: ORCID
J. Kamińska
ORCID: ORCID
M. Angrecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Aiming at the problems of wet reclamation consuming a lot of water, dry(mechanical) reclamation having wear and power consumption, this paper to find suitable reclamation reagents to reduce the influence of harmful substances in used sodium silicate sands. By comparing the reclamation effect of CaO, Ca(OH) 2 and Ba(OH) 2 reclamation powder reagents, it was concluded that CaO had the best reclamation effect. Through the single factor experiment, the influence of CaO on the reclamation effect was explored: 1. addition amount of CaO;2. the additional amount of water ;3. reclamation time. The orthogonal results showed that the CaO reclamation effect was the best when the amount of CaO was 1.5%, the amount of sodium silicate was 4.0%, the amount of water added was 6.0%, and the reclamation time was 12.0h. In this experiment, 82.2% carbonate and 75.0 % silicate in used sands can be removed. The microscopic analysis of the reclamation sands was carried out by scanning electron microscope (SEM); The surface was relatively smooth, without large area cracks and powder accumulation. Compared with the used sands, the instant, 24h ultimate, and residual strengths of the reclaimed sands were increased by 536.5%, 458.1%, and 89.8%, respectively, which was beneficial to the reclamation of the CO2 sodium silicate used sands.
Go to article

Bibliography

[1] Gong, X.L. & Fan, Z.T. (2020). Research and application of green casting materials. MW Metal Forming. (10), 15-18.
[2] Stachowicz, M., Granat, K., & Nowak, D. (2013). Dielectric hardening method of sandmixes containing hydrated sodium silicate. Metalurgija. 52(2), 169-172.
[3] Nowak, D. (2017). The impact of microwave penetration depth on the process of hardening the moulding sand with sodium silicate. Archives of Foundry Engineering. 17(4),115-118. DOI: 10.1515/afe-2017-0140
[4] Stachowicz, M. & Granat, K. (2015). Influence of melt temperature on strength parameters of cyclically activated used-up sandsmixes containing water-glass, hardened with microwaves. Archives of Civil and Mechanical Engineering. 15(4), 831-835. http://dx.doi.org/10.1016/j.acme.2015.06.003
[5] Stachowicz, M. & Granat, K. (2014). Research on reclamation and activation of moulding sands containing water-glass hardened with microwaves. Archives of Foundry Engineering. 14(2), 105-110. DOI: 10.2478/afe-2014-0046
[6] Sun, Q.Z., Zhong, Z.K. & Zhang, P.Q, et al. (2005). Modification mechanism of thermally regenerated quartz sands. Foundry. (10), 87-88.
[7] Wang, J.N., Fan, Z.T. & Zhang, H.M. (2009). Mechanical properties and reproducibility of used sodium silicate sands. Journal of Huazhong University of Science and Technology (Natural Science Edition). 37(02), 85-88.
[8] Mashifana, T. & Sithole, T. (2020). Recovery of silicon dioxide from waste foundry sands and alkaline activation of desilicated foundry sands. Journal of Sustainable Metallurgy. 6(4), 700-714. https://doi.org/10.1007/s40831-020-00303-5
[9] Zhu, C.X., Lu, C. & Ji, D.S, et al. (2007). Recent advances in waterglass sand technologies. China Foundry. 4(1),13-17.
[10] Ignaszak, Z. & Prunier, J.B. (2016). Effective laboratory method of chromite content estimation in reclaimed sands. Archives of Foundry Engineering. 16(3), 162-166. DOI: 10.1515/afe-2016-0071
[11] Stachowicz, M., Granat, K. & Nowak, D. (2011). Application of microwaves for innovative hardening of environment-friendly water-glass moulding sands used in manufacture of cast-steel castings. Archives of Civil and Mechanical Engineering. 11(1), 209-219. https://doi.org/10.1016/S1644-9665(12)60184-8
[12] Lu, J.J., Li, J.C., Li, H. & Wang, H.F. (2021). Study on sewage harmless treatment in wet reclamation process of used water glass sands. Journal of Huazhong University of Science and Technology (Natural Science Edition). 49(08), 127-132.
[13] Stachowicz, M., Granat, K. & Payga. (2017). Influence of sand base preparation on properties of chromite moulding sands with sodium silicate hardened with selected methods. Archives of Metallurgy and Materials. 62(1), 379-383. DOI: 10.1515/amm-2017-0059
[14] Masuda, Y., Tsubota, K., Ishii, K., Imakoma, H. & Ohmura, N. (2009). Drying rate and surface temperature in solidification of glass particle layer with inorganic binder by microwave drying. Kagaku Kogaku Ronbunshu. 35(2), 229-231.
[15] Tang, L.B., Lu, J.J. & Tan, Y.Y, et al. (2017). Determination of bicarbonate and carbonate contents in reclaimed sodium silicate-bonded sand. Inorganic Chemicals Industry. 49(04), 68-70.
[16] Wang, C., Wang, H.F. & Dai, Z. et al.(2015). Determination of carbonate content in sodium silicate-bonded sand by gas volumetry. Metallurgical Analysis. 35(05), 54-58.
[17] Tang, L.B. & Lu, J.J. (2018). Determination of sodium silicate in used sodium silicate sand by molybdenum blue spectrophotometry. Journal of Materials Science and Engineering. 36(05), 845-848.
[18] Chen, J.Q., Han, D.D., Qiu, A. & Zhu, H, et al. (2018). Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system. Applied Thermal Engineering.132, 508-520. https://doi.org/10.1016/j.applthermaleng.2017.12.115

Go to article

Authors and Affiliations

J. Lu
1
ORCID: ORCID
L. Yang
1
ORCID: ORCID
J. Qian
1
ORCID: ORCID
W. He
1
ORCID: ORCID
H. Wang
1
ORCID: ORCID

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430200, China

This page uses 'cookies'. Learn more