Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents research on modelling fracture in softwood bent elements. This kind of timber is the one most exploited for construction. Authors present a brief review on the subject with emphasis on three basic attempts: Linear Elastic Fracture Mechanics (LEFM), Continuum Damage Mechanics (CDM) and Hill’s Function (HF). Proposed 3D solution bases on Hill’s Function applied in the ABAQUS FEM code. The new idea includes isolating theoretical compression and tension zones in a model. Then, it is possible to distinguish between compressive and tensile strength and predict a real behaviour of bent elements. Introducing general dependencies between material properties leads to the need of determining only longitudinal elastic modulus (EL) and modulus of rupture (MOR). It is practical because these parameters are the main reported in a scientific and technical literature. Authors describe all of the assumptions in details. The experimental tests and Digital Image Correlation method (DIC) validate the FEM model.

Go to article

Authors and Affiliations

Bartosz Kawecki
ORCID: ORCID
Jerzy Podgórski
Download PDF Download RIS Download Bibtex

Abstract

Steel-wood-steel connection is widely seen in many applications, such as timber structures. The stiffness of steel-wood-steel connection loaded parallel to grain for softwoods originated from Malaysia was investigated in this study. Numerical models have been developed in ABAQUS to study the stiffness connection. Softwoods of Damar Minyak and Podo have been selected in this analysis. The comprehensive study focused on the effect of bolt configurations on stiffness. Numerical analysis is carried out and the developed model has been validated with the previous study. Further investigations have been made by using the validated model. From this model, numerical analysis of the stiffness values have been made for various bolt configurations, including bolt diameter, end distance, bolt spacing, number of rows and bolts and edge distance. The result shows that the stiffness of bolted timber connections for softwood depends on the bolt diameter, number of rows and bolts, end distance and edge distance. Based on the result, stiffness increased as the diameter of the bolt, end distance, number of rows and bolts and edge distance increased. It is also discovered that the stiffness equation in Eurocode 5 (EC5) is inadequate as the equation only considered parameters which are wood density and bolt diameter. Other connection parameters such as geometry are not considered in the EC5 equation.
Go to article

Authors and Affiliations

Nur Liza Rahim
1 2
ORCID: ORCID
Francis Ting Shyue Sheng
1
ORCID: ORCID
Abdul Razak Abdul Karim
3
ORCID: ORCID
Marcin Nabialek
4
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
5 6
ORCID: ORCID
Marek Sroka
7
ORCID: ORCID

  1. Universiti Malaysia Perlis, Faculty of Civil Engineering Technology, 02600 Arau Perlis, Malaysia
  2. Sustainable Environment Research Group (SERG), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  3. Faculty of Engineering, University of Malaysia, Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  4. Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Czestochowa, Poland
  5. Universiti Malaysia Perlis, Faculty of Chemical Engineering Technology, 02600 Arau Perlis, Malaysia
  6. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), 01000 Kangar Perlis, Malaysia
  7. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian University of Technology, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more