Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper reports on compact CMOS-based electronic sources and detectors developed for the terahertz frequency range. It was demonstrated that with the achievable noise-equivalent power levels in a few tens of pW\Hz 1/2 and the emitted power in the range of 100 μW, one can build effective quasi-optical emitter-detector pairs operating in the 200–266 GHz range with the input power-related signal-to-noise ratio reaching 70 dB for 1 Hz-equivalent noise bandwidth. The applicability of these compact devices for a variety of applications including imaging, spectroscopy or wireless communication links was also demonstrated.
Go to article

Authors and Affiliations

Dmytro B. But
1 2
ORCID: ORCID
Alexander V. Chernyadiev
1
ORCID: ORCID
Kęstutis Ikamas
3 4
ORCID: ORCID
Cezary Kołaciński
1 5
ORCID: ORCID
Anastasiya Krysl
6
Hartmut G. Roskos
6
ORCID: ORCID
Wojciech Knap
1
ORCID: ORCID
Alvydas  Lisauskas
1 3
ORCID: ORCID

  1. CENTERA, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
  2. NOMATEN Centre of Excellence, National Centre of Nuclear Research, A. Soltana 7, 05-400 Otwock-Świerk, Poland
  3. Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio Av. 9, LT-10222 Vilnius, Lithuania
  4. General Jonas Žemaitis Military Academy of Lithuania, Šilo Av. 5A, LT-10322 Vilnius, Lithuania
  5. Łukasiewicz Research Network Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
  6. Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, D60435 Frankfurt, Germany
Download PDF Download RIS Download Bibtex

Abstract

Recent advances in THz detection with the use of CMOS technology have shown that this option has the potential to be a leading method of producing low-cost THz sensors with integrated readout systems. This review paper, based on authors’ years of experience, presents strengths and weaknesses of this solution. The article gives examples of some hints, regarding radiation coupling and readout systems. It shows that silicon CMOS technology is well adapted to the production of inexpensive imaging systems for sub-THz frequencies. As an example paper presents the demonstrator of a multipixel Si-CMOS THz spectroscopic system allowing for chemical identification of lactose. The THz detectors embedded in this system were manufactured using the CMOS process.

Go to article

Authors and Affiliations

J. Marczewski
D. Coquillat
W. Knap
C. Kolacinski
P. Kopyt
K. Kucharski
J. Lusakowski
D. Obrebski
D. Tomaszewski
D. Yavorskiy
P. Zagrajek
R. Ryniec
N. Palka

This page uses 'cookies'. Learn more