Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Results of scientific researches show the trend of active using nitrides and borides of transition

metals and their combination in developing protective materials. While single elements

nitrides have been well studied, their multilayer modifications and combinations require

more detailed study. Physical-mechanical properties and structural-phase state of multilayer

coating according to the deposition conditions is an important task for the study.

It will be the analysis of physical-mechanical and electrical properties of coatings based on

refractory metals nitrides, their structure and phase composition and surface morphology

depending on the parameters of condensation. It was established the structure and behavior

of nano scale coatings based on refractory metals nitrides (Ti, Zr) depending on the size

of nano grains, texture, stress occurring in coatings.

Go to article

Authors and Affiliations

Anton Panda
Konstiantyn Dyadyura
Tatyana Hovorun
Oleksandr Pylypenko
Marina Dunaeva
Iveta Pandova
Download PDF Download RIS Download Bibtex

Abstract

High strength tire cord steel is extensively used in radial ply tyres as the framework material, but the presence of brittle single titanium inclusions or complex titanium inclusions can cause failure of the wires and jeopardize their performance in production. In order to provide a key guidance on the control of titanium inclusions, it is necessary to clarify their formation mechanism during solidification. In the present work, the thermodynamic calculations were employed for an elaboration on their formation mechanism, combined with the industrial test. The TiN–MnS complex inclusions observed by SEM–EDS shows that the internal corresponds to TiN and the external is MnS. Thermodynamic calculations based on the microsegregation model indicate that MnS forms first, which can act as a nucleation site for the co–deposit of TiN in the mushy zone. As the MnS inclusions have a better deformation than that of TiN inclusions, then the TiN inclusions are wrapped by the MnS inclusions, generating TiN–MnS complex inclusions after rolling.
Go to article

Bibliography

[1] Abushosha, R., Vipond, R. & Mintz, B. (1991). Influence of titanium on hot ductility of as cast steels. Materials Science & Technology. 7(7), 613-621.
[2] Chen, Z., Li, M., Wang, X., He, S. & Wang, Q. (2019). Mechanism of floater formation in the mold during continuous casting of Ti-stabilized austenitic stainless steels. Metals. 9, 635-649.
[3] Karmakar, A., Kundu, S., Roy, S., Neogy, S., Srivastava, D. & Chakrabarti, D. (2014). Effect of microalloying elements on austenite grain growth in Nb–Ti and Nb–V steels. Materials Science and Technology. 30(6), 653-664.
[4] Reyes-Calderón, F., Mejía, I., Boulaajaj, A. & Cabrera, J.M. (2013). Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high–Mn austenitic twinning induced plasticity (TWIP) steel. Materials Science and Engineering: A. 560, 552-560.
[5] Chen, C.Y., Jiang, Z.H., Li, Y., Zheng, L.C., Huang, X.F. & Yang, G. (2019). State of the art in the control of inclusions in tire cord steels and saw wire steels–A Review. Steel Research International. 6, 1-13.
[6] Lei, J.L., Zhao, D.N., Fu, Y.J., & Xu, X.F. (2019). Research on the characterization of Ti inclusions and their precipitation behavior in tire cord steel. Archives of Foundry Engineering. 19(3), 33-37.
[7] Cui, H.Z. & Chen, W. Q. (2012). Effect of boron on morphology of inclusions in tire cord steel. Journal of Iron and Steel Research International. 19( 4), 22-27.
[8] Wu, S., Liu, Z., Zhou, X., Yang, H. & Wang, G. (2017). Precipitation behavior of Ti in high strength steels. Journal of Central South University. 24(12), 2767-2772.
[9] Petit, J., Sarrazin-Baudoux, C. & Lorenzi, F. (2010). Fatigue crack propagation in thin wires of ultrahigh strength steels. Procedia Engineering. 2, 2317-2326.
[10] Liu, H.Y., Wang, H.L., Li, L., Zheng, J.Q., Li, Y.H. & Zeng, X.Y. (2011). Investigation of Ti inclusions in wire cord steel. Ironmaking and Steelmaking. 38(1), 53-58.
[11] Cai, X.F., Bao, Y.P., Wang, M., Lin, L., Dai, N.C. & Gu, C. (2015). 69Investigation of precipitation and growth behavior of Ti inclusions in tire cord steel. Metallurgical Research and Technology. 112(4), 407-418.
[12] Lei, J.L., Xue, Z.L., Jiang, Y.D., Zhang, J. & Zhu, T.T. (2012). Study on TiN precipitation during solidification for hypereutectoid tire cord steel. Metalurgia International. 17(9), 10-15.
[13] Chen, J.X. (2010). Common charts and databook for steelmaking. (2nd ed.). Beijing: Metallurgical Industry Press.
[14] Clyne, T.W., Wolf, M. & Kurz, W. (1982). The effect of melt composition on solidification cracking of steel with particular reference to continuous casting. Metallurgical and Materials Transactions B. 13(2), 259-266.
[15] Wada, H., & Pehlke, R.D. (1985). Nitrogen solubility and nitride formation in austenitic Fe–Ti alloys. Metallurgical and Materials Transactions B. 16(4), 815-822.
[16] Ma, Z., & Janke, D. (1998). Characteristics of oxide precipitation and growth during solidification of deoxidized steel. ISIJ International. 38(1), 46-52.
[17] Darken, L.S. (1967). Thermodynamics of binary metallic solutions. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers. 239(1), 80-89.
[18] Yoshikawa, T., & Morita, K. (2007). Influence of alloying elements on the thermodynamic properties of titanium in molten steel. Metallurgical and Materials Transactions B. 38(4), 671-680.
[19] Kim, W., Jo, J., Chung, T., Kim, D. & Pak, J. (2007). Thermodynamics of titanium, nitrogen and TiN formation in liquid iron. ISIJ International. 47(8), 1082-1089.
[20] Ma, W.J., Bao, Y.P., Zhao, L.H., & Wang, M. (2014). Control of the precipitation of TiN inclusions in gear steels. International Journal of Minerals Metallurgy and Materials. 21(3), 234-239.
[21] Huang, X.H. (2001). Theory of Iron and Steel Metallurgy. (3rd ed.). Beijing: Metallurgical Industry Press.
[22] Won, Y.M. & Thomas, B.G. (2011). Simple model of micro–segregation during solidification of steels. Metallurgical and Materials Transactions A. 32(7), 1755-1767.
[23] Ohnaka, I. (1986). Mathematical-analysis of solute redistribution during solidification with diffusion in solid–phase. ISIJ International. 26(12), 1045-1051.
[24] Maugis, P. & Gouné, M. (2005). Kinetics of vanadium carbonitride precipitation in steel: a computer model. Acta Materialia. 53(12), 3359-3367.
[25] Manohar, P.A., Dunne, D.P., Chandra, T. & Killmore, C.R. (2007). Grain growth predictions in microalloyed steels. ISIJ International, 36(2), 194-200.
[26] Choudhary, S.K. & Ghosh, A. (2009). Mathematical model for prediction of composition of inclusions formed during solidification of liquid steel. ISIJ International. 49(12), 1819-1827.
[27] Gao, S., Wang, M., Guo, J.L., Wang, H. & Bao, Y.P. (2019). Extraction, distribution, and precipitation mechanism of TiN–MnS complex inclusions in Al-killed titanium alloyed interstitial free steel. Metals and Materials International. 12, 1-9.
Go to article

Authors and Affiliations

Jialiu Lei
1
Xiumin Wang
1
Dongnan Zhao
1
Yongjun Fu
1

  1. Hubei Polytechnic University, China
Download PDF Download RIS Download Bibtex

Abstract

The lack of room-temperature ductility of high-strength TiAl-based alloys called for complicated high temperature processing limiting their application areas. Introduction of additive manufacturing (AM) methods allowed to circumvent this disadvantage, but entailed microstructure refinement affecting, among the others, their oxidation resistance. The dry-air high temperature oxidation processing of TiAl-based alloys is relatively well covered for coarse grained materials, but to what extent the TiAl alloys are affected by the changes caused by the AM remains to be found out. Additionally, the role of nitrogen during these processes was to large extent omitted in previous works. Within the present experiment, the mould cast (MC) and the electron beam melted (EBM) Ti-48Al-2Nb-0.7Cr-0.3Si (at. %) RNT650 alloys were dry-air oxidized at 650°C for 1000 h. The TEM/EDS investigations allowed to confirm that the scale formed during such treatment consists of the layers occupied predominantly by TiO2+Al2O3/TiO2/Al2O3 sequence. Additionally, it was shown that N diffuses to the sub-scale and reacts with the substrate forming two distinct discontinuous sub-layers of α2-Ti3Al(N) and TiN. The scale over EBM was noticeably less porous and nitrogen penetration of the substrate was more extensive, while the MC showed higher susceptibility to local sub-scale oxidation.
Go to article

Authors and Affiliations

J. Morgiel
1
ORCID: ORCID
T. Dudziak
2
ORCID: ORCID
L. Maj
1
ORCID: ORCID
A. Kirchner
3
M. Pomorska
1
ORCID: ORCID
B. Klöden
3
T. Weissgärber
3
D. Toboła
2
ORCID: ORCID

  1. Polish Academy of Science, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059-Kraków, Poland
  2. Łukasiewicz Research Network, Kraków Institute of Technology, 73 Zakopianska Str, 30-418 Kraków, Poland
  3. Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Institutsteil Dresden Winterbergstrasse 28, 01277 Dresden, Germany

This page uses 'cookies'. Learn more