Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the influence of isolation systems on the seismic behavior of urban reinforce concrete bridge. The performance of the Hesarak Bridge constructed in Karaj city, Iran with two isolation systems; i.e. the existing elastomeric rubber bearing (ERB) and a proposed lead rubber bearing (LRB) is discussed. The numerical model was implemented in the well-known FEM software CSIBridge. The isolated bridge has been analyzed using nonlinear time history analysis method with seven pairs of earthquake records and the results are compared for the two isolation systems. The LRB isolators are shown to have superior seismic performance in comparison with the existing ERB systems based on the response evaluation including force on the isolator, pier base shear, deck acceleration, bending moment, pier displacement, and energy dissipation.

Go to article

Authors and Affiliations

Ali Akbar Edalati
Hossein Tahghighi
Download PDF Download RIS Download Bibtex

Abstract

The bridge horizontal swivel system generally adopts a symmetrical structure and uses a spherical hinge structure that can adjust the rotation to complete rotation construction. Because of the complexity of railway lines under bridges, some asymmetrical horizontal swivel systems have been increasingly applied in practical engineering in recent years. This system is more suitable for areas with complex railway lines, reduces the bridge span, and provides better economic benefits. However, it is also extremely unstable. In addition, instability can easily occur under dynamic loads, such as earthquake action and pulsating wind effects. Therefore, it is necessary to study their mechanical behavior. Based on the horizontal swivel system of an 11,000-ton asymmetric continuous girder bridge, the dynamic response of the horizontal swivel system to seismic action was studied using the finite element simulation analysis method. Furthermore, using the Peer database, seismic waves that meet the calculation requirements are screened for time-history analysis and compared to the response spectrum method. The mechanical properties of the structural system during and after rotation were obtained through calculations. During rotation, the seismic response of the structure is greater. To reduce the calculation time cost, an optimization algorithm based on the mode shape superposition method is proposed. The calculation result is 87% that of the time-history analysis, indicating a relatively high calculation accuracy.
Go to article

Authors and Affiliations

Jiawei Wang
1
ORCID: ORCID
Hongshuai Gao
2
ORCID: ORCID
Kexin Zhang
3
ORCID: ORCID
Zongyun Mo
1
ORCID: ORCID
Hongchun Wang
1
ORCID: ORCID

  1. Anhui Polytechnic University, School of Architecture and Civil Engineering, Wuhu City, Beijing Middle Road, China
  2. Heilongjiang University, College of Civil Engineering, Harbin City, Xuefu Road, China
  3. Shenyang Jianzhu University, School of Architecture and Civil Engineering, Shenyang City, Hun Nan Road, China
Download PDF Download RIS Download Bibtex

Abstract

In recent years, the intensity of the loads caused by mining activity has increased in Poland. This exploitation is often carried out in urbanized areas, so their operation on structures is not only a social problem, but also a challenge for engineers. Many of the surface facilities safe use affects the failure-free operation of the mine. The paper presents the results of representative measurements of surface vibrations from mining areas in Poland and earthquakes and their comparison. Particular attention was paid to the values of PGA/PGV ratios and the most commonly used methods for dynamic calculation of the structure. The last part of the work presents an experimentally verified dynamical model of the selected RC skip tower. The forced vibrations of the model were analysed by taking representative earthquakes and mining origin tremors. Time history non-linear analysis and push over methods were used. The nonlinear concrete model was adopted in the analyses. The results show that pushover analysis is not able to capture the seismic demands imposed by far-field or near-fault ground motions, especially for short-period systems for which it can lead to significant errors in the estimation of the seismic demands. The results confirmed the qualitative results of the linear analysis. The carried out inventory of cracks to the skip tower also allowed their location in bearing elements of the skip tower. The results of non-linear numerical analyses allowed us to assess the safety of the structure.
Go to article

Authors and Affiliations

Filip Pachla
1
ORCID: ORCID
Tadeusz Tatara
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Cracow, Poland

This page uses 'cookies'. Learn more