Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A peralkaline granite of the Ilímaussaq Complex, South Greenland, contains the rare mineral henrymeyerite [(Ba0.92Na0.05Ca0.03)1.0(Ti6.87Fe2+1.04Nb0.03)7.9O16], a low-Fe Ba titanate [(Ba0.74Ca0.02Na0.05)0.8 (Ti4.9oFe2+0.15 Nb0.04)5.1O11], and an unidentified Ba titanosilicate. Both titanates show the coupled substitution 2Na+ + Si4+ → Ba2+ + Ti4+. The minerals are present as tiny crystals fringing ilmenite inclusions in an amphibole crystal and are thought to have formed during the hydrothermal stage of the granite’s evolution.
Go to article

Authors and Affiliations

Małgorzata Cegiełka
1 2
Bogusław Bagiński
1
Ray Macdonald
1 3
Beata Marciniak-Maliszewska
1
Marcin Stachowicz
1

  1. Department of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
  2. Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw,Twarda 51/55, 00-818 Warsaw, Poland
  3. Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
Download PDF Download RIS Download Bibtex

Abstract

The paper compares changes in the structure and mechanical properties due to the synergistic effect of alloying elements Zr and Ti. It is assumed that by increasing the content of Zr and Ti in the aluminium alloy, better mechanical properties will be achieved. Paper focuses on description of the differences between the samples casted into the shell mold and the metal mold. Main difference between mentioned molds is a different heat transfer coefficient during pouring, solidification and cooling of the metal in the mold. The main goal was to analyse the influence of Zr and Ti elements and compare the mechanical properties after the heat treatment. Curing and precipitation aging were used during the experiment. The effect of the elements on AlSi7Mg0.3 alloy created differences between the excluded Zr phases after heat treatment. Evaluation of the microstructure pointed to the decomposition of large predominantly needle Zr phases into smaller, more stable formations.
Go to article

Bibliography

[1] Bolibruchová, D., Tillová, E. (2005). Al-Si foundry alloys. Žilina.
[2] Michna, Š., Lukáč, I. (2005). et al. Encyclopedia of aluminum.
[3] Bechný, L. (1990). Foundry metallurgy and technology. ALFA Bratislava.
[4] Bolibruchová, D., Kuriš, M. & Matejka, M. (2019). Effect of Zr on selected properties and porosity of AlSi9Cu1Mg alloy for the purpose of production of high-precision castings. Manufacturing Technology. 19(4), 1213-2489.
[5] Bolibruchova, D., Macko, J. & Bruna, M. (2014). Elimination of negative effect of Fe in secondary alloys AlSi6Cu4 (EN AC 45 000, A 319) by nickel. Archives of Metallurgy and Materials, 59, 717-721
[6] Mahmudi, R., Sepehrband, P. & Ghasemi, H.M. (2006). Improved properties of A319 aluminum casting alloy modified with Zr. Materials Letters. 2606-2610. DOI 10.1016/j.matlet. 2006.01.046
[7] Peng, G., Chen, K., Fang, H. & Chen, S. (2012). A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy. Materials Science and Engineering. Volume 535, 311-315.
[8] Sha, G. & Cerezo, A. (2004). Early-stage precipitation in Al−Zn−Mg−Cu alloy (7050). Acta Materialia. 52(15), 4503-4516.
[9] Lü, X., Guo, E., Rometsch, P. & Wang, L. (2012). Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA7150 aluminium alloy. Transactions of Nonferrous Metals Society of China. 22, 2645-2651. Science Direct.
[10] STN EN 1706. AC–42100. Aluminium alloy for general purpose castings.
[11] Liu, S., Zhang, X.M. & Chen, M.A. & You, J. H. (2008). Influence of aging on quench sensitivity effect of 7055 aluminium alloy. Materials Characterization, 59(1), 53-60.
[12] Pourkia, N., Emamy, M., Farhangi, H. & Seyed, E. (2010). The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminium alloy. Materials Science and Engineering A. 527, 5318-5325.
[13] Tillova, E., Chalupova, M. (2009). Structural analysis of Al-Si alloys. Žilina: EDIS ŽU UNIZA.

Go to article

Authors and Affiliations

E. Kantoríková
1
ORCID: ORCID
M. Kuriš
1
R. Pastirčák
1
ORCID: ORCID

  1. Department of Technological Engineering, University of Žilina in Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

In this study, lead-free bismuth sodium titanate (BNT; Bi0.5Na0.5TiO3) powder was synthesized using wet precipitation. The sintering behavior and dielectric properties of the BNT ceramics were investigated in terms of the sintering temperature. Titanium isopropoxide, sodium nitrate, and bismuth nitrate were used as starting materials. A titanium peroxo complex (TPC) solution was synthesized using titanium hydroxide, nitric acid, and hydrogen peroxide. A clear Bi-Na-Ti precursor solution was obtained by mixing the TPC, sodium, and bismuth nitrate solutions. The pH of the precursor solution was increased to 9 using NaOH and a white powder was precipitated. A spherical and pyrochlore phase-free BNT powders were obtained by calcining the white precipitate above 600°C for 3 h. Particle size analysis and SEM observations revealed that the BNT powder calcined at 700°C exhibited homogeneous distribution with particle size less than 300 nm. The sinterability of the BNT ceramic prepared through wet precipitation was significantly enhanced compared to that of the BNT powder prepared via the solid-state reaction of sodium carbonate, bismuth oxide, and titanium oxide powders.
Go to article

Authors and Affiliations

Islam Takiul
1
ORCID: ORCID
Sanghaw Lee
1
ORCID: ORCID
Haejin Hwang
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea

This page uses 'cookies'. Learn more