Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

22 representative antibiotics, including 8 quinolones (QNs), 9 sulfonamides (SAs), and 5 macrolides (MCs) were selected to investigate their occurrence and removal efficiencies in a Wastewater Treatment Plant (WWTP) and their distribution in the receiving water of the Chaobai River in Beijing, China. Water quality monitoring was performed in an integrated way at different selected points in the WWTP to explore the potential mechanism of antibiotics removal during wastewater treatment. Water quality of the Chaobai River was also analyzed to examine environmental distribution in a river ecosystem. The results showed that within all the 22 compounds examined, 10 antibiotics were quantified in wastewater influent, 10 in effluent, and 7 in river. Sulfadiazine (SDZ, 396 ng/L) and Sulfamethazine (SMZ, 382 ng/L) were the dominating antibiotics in the influent. Both the conventional treatment and advanced Biological Aerated Filter (BAF) system was important for the removal of antibiotics from the wastewater. And the concentrations of selected antibiotics were ranged from 0-41.8 ng/L in the effluent-receiving river. Despite the fact that the concentrations were reduced more than 50% compared to effluent concentrations, WWTP discharge was still regarded as a dominant point-source input of antibiotics into the Chaobai River.

Go to article

Authors and Affiliations

Zhang Chunhui
Wang Liangliang
Gao Xiangyu
He Xudan
Download PDF Download RIS Download Bibtex

Abstract

Polymer mixed-matrix nanocomposite membranes were prepared by a wet-phase inversion method and used in ultrafiltration processes to treat wastewater treatment plant effluent spiked with organic micropollutants. The effects of halloysite (Hal), TiO2, and functionalized single-walled carbon nanotube (SWCNT-COOH) nanofillers on the treatment efficiency, permeability loss, and fouling behavior of polyethersulfone (PES) membranes were investigated and compared with those of a pristine PES membrane. The nanocomposite membranes exhibited lower porosity and stronger negative surface charge because of the added hydrophilic nanofillers. The PES-Hal membrane achieved the optimal balance of permeability and micropollutant removal owing to enhanced pollutant adsorption on the membrane surface and the creation of an easily removable cake layer (i.e., reversible fouling). The PES-SWCNT-COOH membrane demonstrated the highest treatment efficiency, but also the high permeability loss. In contrast, PES-TiO2 exhibited excellent antifouling properties, but poorer treatment capabilities.
Go to article

Bibliography

  1. Adeniyi, A., Mbaya, R., Popoola, P., Gomotsegang, F., Ibrahim, I. & Onyango, M. (2020). Predicting the fouling tendency of thin film composite membranes using fractal analysis and membrane autopsy, Alexandria Engineering Journal, 59, 6, pp. 4397-4407. DOI:10.1016/j.aej.2020.07.046
  2. Arif, Z., Sethy, N.K., Mishra, P.K. & Verma, B. (2019). Antifouling behaviour of PVDF/TiO2 composite membrane: a quantitative and qualitative assessment, Iranian Polymer Journal, 19, 28, pp. 301-312. DOI:10.1007/s13726-019-00700-y
  3. Bassyouni, M., Abdel-Aziz, M.H., Zoromba, M.Sh., Abdel-Hamid, S.M.S. & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification, Journal of Industrial and Engineering Chemistry, 73, pp. 19-46. DOI:10.1016/j.jiec.2019.01.045
  4. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2021). New generation of semipermeable membranes with carbon nanotubes for water and wastewater treatment: Critical review, Archives of Environmental Protection, 47, 3, pp. 3-27, DOI:10.24425/aep.2021.138460
  5. Bohdziewicz, J., Dudziak, M., Kamińska, G. & Kudlek, E. (2016). Chromatographic determination and toxicological potential evaluation of selected micropollutants in aquatic environment - analytical problems, Desalination and Water Treatment, 57, pp. 1361-1369. DOI:10.1080/19443994.2015.1017325
  6. Bu, F., Gao, B., Yue, Q., Liu, C., Wang, W. & Shen, X. (2019). The Combination of Coagulation and Adsorption for Controlling Ultrafiltration Membrane Fouling in Water Treatment, Water, 11, pp. 1-13. DOI:10.3390/w11010090
  7. Buruga, K., Song, H., Shan, J., Bolan, N., Thimmarajampet Kalathi, J. & Kim, K-H. (2019). A review on functional polymer-clay based nanocomposite membranes for treatment of water, Journal of Hazardous. Materials, 379, pp. 1-27. DOI:10.1016/j.jhazmat.2019.04.067
  8. Dudziak, M. & Burdzik-Niemiec, E. (2017). Ultrafiltration through modified membranes in wastewater treatment containing 17β-estradiol and bisphenol A, Przemysł Chemiczny, 96, pp. 448-452, DOI: 10.15199/62.2017.2.35 (in Polish).
  9. Esfahani, M.R., Aktij, S.A., Dabaghian, Z., Firouzjaei, M.D., Rahimpour, A., Eke, J.; Escobar, I.C., Abolhassani, M., Greenlee, L.F., Esfahani, A.R., Sadmani, A. & Koutahzadeh, N. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications, Separation and Purification Technolology, 213, pp. 465-499. DOI:10.1016/j.seppur.2018.12.050
  10. Farjami, M., Vatanpour, V. & Moghadassi, A. (2020). Effect of nanoboehmite/poly(ethylene glycol) on the performance and physiochemical attributes EPVC nano-composite membranes in protein separation, Chemical Engineering Research and Design, 156, pp. 371-383. DOI:10.1016/j.cherd.2020.02.009
  11. Gamoń, F., Tomaszewski, M., Cema, G. & Ziembińska-Buczyńska, A. (2022). Adsorption of oxytetracycline and ciprofloxacin on carbon-based nanomaterials as affected by pH, Archives of Environmental Protection, 48, 2, pp. 34-41. DOI:10.24425/aep.2022.140764
  12. Ghaemi, N., Madaeni, S.S., Alizadeh, A., Rajabi, H. & Daraei, P. (2011). Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides, Journal of Membrane Science, 382, pp. 135-147. DOI:10.1016/j.memsci.2011.08.004
  13. Haas, R., Opitz, R. & Grischek, T. (2019). The AquaNES Project: Coupling Riverbank Filtration and Ultrafiltration in Drinking Water Treatment, Water, 11, pp. 1-14. DOI:10.3390/w11010018.
  14. Hao, S., Jia, Z., Wen, J., Li, S., Peng, W., Huang, R. & Xu, X. (2021). Progress in adsorptive membranes for separation – A review, Separation and Purification Technology, 255, 117772. DOI:10.1016/j.seppur.2020.117772.
  15. Inurria, A., Cay-Durgun, P., Rice, D., Zhang, H., Seo, D.-K., Lind, M.L. & Perreault, F. (2019). Polyamide thin-film nanocomposite membranes with graphene oxide nanosheets: Balancing membrane performance and fouling propensity, Desalination, 451, pp. 139-147. DOI:10.1016/j.desal.2018.07.004.
  16. Kamińska, G. (2022). Modification of ultrafiltration membranes with nanoparticles and their application, Wydawnictwo Politechniki Śląskiej, Gliwice 2022. (in Polish)
  17. Kamińska, G. & Bohdziewicz, J. (2018). Separation of selected organic micropollutants on ultrafiltration membrane modified with carbon nanotubes.Ochrona. Środowiska, 40, 4, pp. 37-42. (in Polish)
  18. Kamińska, G., Bohdziewicz, J., Calvo, J.I., Prádanos, P., Palacio, L. & Hernández, A. (2015). Fabrication and characterization of polyethersulfone nanocomposite membranes for the removal of endocrine disrupting micropollutants from wastewater. Mechanisms and performance, Journal of Membrane Science, 493, pp. 66-79. DOI:10.1016/j.memsci.2015.05.047
  19. Kamińska, G., Bohdziewicz, J., Palacio, L., Hernández, A. & Prádanos, P. (2016). Polyacrylonitrile membranes modified with carbon nanotubes: characterization and micropollutants removal analysis, Desalination and Water Treatment, 57, pp. 1344-1353. DOI:10.1080/19443994.2014.1002277
  20. Kamińska, G., Pronk, W. & Traber, J. (2020). Effect of coagulant dose and backflush pressure on NOM membrane fouling in inline coagulation-ultrafiltration, Desalination and Water Treatment, 199, pp. 188-197. DOI:10.5004/dwt.2020.25657.
  21. Leo, C.P.; Chai, W.K.; Mohammad, A.W., Qi, Y., Hoedley, A.F.A. & Chai, S.P. (2011). Phosphorus removal using nanofiltration membranes, Water Science and Technology 64, pp.199-205. DOI:10.2166/wst.2011.598.
  22. Mao, Y., Huang, Q. Meng, B., Zhou, K., Liu, G., Gigliuzza, A., Drioli, E. & Jin, W. (2020). Roughness-enhanced hydrophobic graphene oxide membrane for water desalination via membrane distillation, Journal of Membrane Science, 611, 118364. DOI:10.1016/j.memsci.2020.118364.
  23. Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48, 1, pp. 75-82. DOI:10.24425/aep.2022.140546.
  24. Maximous, N., Nakhla, G., Wan, W. & Wong, K. (2009). Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration, Journal of Membrane Science, 341, pp. 67–75. DOI:10.1016/j.memsci.2009.05.040.
  25. Mozia, S.; Grylewicz, A.; Zgrzebnicki, M.; Darowna, D. & Czyżewski, A. (2019). Investigations on the properties and performance of mixed matrix polyethersulfone membranes modified with halloysite nanotubes, Polymers-Basel. 11, 671, pp. 1-18. DOI:10.3390/polym11040671.
  26. Muthumareeswaran, M.R. & Agarwal, G.P. (2014). Feed concentration and pH effect on arsenate and phosphate rejection via polyacrylonitrile ultrafiltration membrane, Journal of Membrane Science, 468, pp. 11-19. DOI:10.1016/j.memsci.2014.05.040.
  27. Nasir, A., Masood, F., Yasin, T. & Hammed, A. (2019). Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications, Journal of Industrial and Engineering Chemistry, 79, pp. 29-40. DOI:10.1016/j.jiec.2019.06.052.
  28. Nguyen, M.N., Trinh, P.B., Butkhardt, C.J. & Schafer, A.I. (2021). Incorporation of single-walled carbon nanotubes in ultrafiltration support structure for the removal of steroid hormone micropollutants, Separation and Purification Technology, 264, 118405. DOI:10.1016/j.seppur.2021.118405.
  29. Niedergall, K., Bach, M., Hirth, T., Tovar, G.E.M. & Schiestel, T. (2014). Removal of micropollutants from water by nanocomposite membrane adsorbers, Separation and Purification Technology, 131, 27, pp. 60-68. DOI:10.1016/j.seppur.2014.04.032.
  30. Rogowska, J., Cieszynska-Semenowicz, M., Ratajczyk, W. & Wolska, L. (2020). Micropollutants in treated wastewater, Ambio, 49(2), pp. 487-503. DOI:10.1007/s13280-019-01219-5
  31. Saki, H., Alemayehu, E., Schomburg, J. & Lennartz, B. (2019). Halloysite nanotubes as adsorptive material for phosphate removal from aqueous solution, Water 11, 2, 203. DOI:10.3390/w11020203.
  32. Shaban, M., AbdAllah, H., Said, L. & Ahmed, A.M. (2019). Water desalination and dyes separation from industrial wastewater by PES/TiO2NTs mixed matrix membranes, Journal of Polymer Research, 26, 181, pp. 1-12. DOI:10.1007/s10965-019-1831-4.
  33. Shakak, M., Rezaee, R., Maleki, A., Jafari, A., Safari, M., Shahmoradi, B., Daraei, H. & Lee, S-M. (2019). Synthesis and characterization of nanocomposite ultrafiltration membrane (PSF/PVP/SiO2) and performance evaluation for the removal of amoxicillin from aqueous solutions, Environmental Technology & Innovation, 17, 100529. DOI:10.1016/j.eti.2019.100529.
  34. Suhalim, N.S., Kasim, N., Mahmoudi, E., Shamsudin, I.J., Mohammad, A.W., Zuki, F.M. & Jamari, N. (2022). Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview, Nanomaterials, 12, 437. DOI:10.3390/nano12030437.
  35. Vatanpour, V., Mansourpanah, Y., Soroush Mousavi Khadem, S., Zinadini, S., Dizge, N., Reza Ganjali, M., Mirsadeghi, S., Rezapour, M., Reza Saeb, M. & Karimi-Male, H. (2021). Nanostructured polyethersulfone nanocomposite membranes for dual protein and dye separation: Lower antifouling with lanthanum (III) vanadate nanosheets as a novel nanofiller, Polymer Testing, 94, pp. 107040. DOI:10.1016/j.polymertesting.2020.107040.
  36. Vatanpour, V., Madaeni, S.S., Rajabi, L., Zinadini, S. & Derakhshan, A.A. (2012). Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes, Journal of Membrane Science, 401-402, pp. 132-143. DOI:10.1016/j.memsci.2012.01.040.
  37. Wang, S., Yao, S., Du, K., Yuan, R., Chen, H., Wang, F. & Zhou, B. (2021). The mechanisms of conventional pollutants adsorption by modified granular steel slag, Environmental Engineering Research, 26, 1, 190352. DOI:10.4491/eer.2019.352.
  38. Zhang, J., Nguyen, M.N., Li, Y., Yang, C. & Schafer, A.I. (2020). Steroid hormone micropollutant removal from water with activated carbon fiber-ultrafiltration composite membranes, Journal of Hazardous Materials, 391, 122020. DOI:10.1016/j.jhazmat.2020.122020.
  39. Zhang, X., Wang, D.K., Lopez, D.R.S. & Diniz da Costa, J. (2014). Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment, Chemical Engineering Journal, 236, pp. 314-322. DOI:10.1016/j.cej.2013.09.059.
Go to article

Authors and Affiliations

Gabriela Kamińska
1
ORCID: ORCID

  1. Institute of Water and Wastewater Engineering, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Antibiotics are a group of substances potentially harmful to the environment. They can play a role in bacterial resistance transfer among pathogenic and non-pathogenic bacteria. In this experiment three representatives of medically important chemotherapeutics, confirmed to be present in high concentrations in wastewater treatment plants with HPLC analysis were used: erythromycin, sulfamethoxazole and trimethoprim. Erythromycin concentration in activated sludge was not higher than 20 ng L−1. N-acetylo-sulfamethoxazole concentration was 3349 ± 719 in winter and 2933 ± 429 ng L−1 in summer. Trimethoprim was present in wastewater at concentrations 400 ± 22 and 364 ± 60 ng L−1, respectively in winter and summer. Due to a wide variety of PCR-detectable resistance mechanisms towards these substances, the most common found in literature was chosen. For erythromycin: erm and mef genes, for sulfamethoxazole: sul1, sul2, sul3 genes, in the case of trimethoprim resistance dhfrA1 and dhfr14 were used in this study. The presence of resistance genes were analyzed in pure strains isolated from activated sludge and in the activated sludge sample itself. The research revealed that the value of minimal inhibitory concentration (MIC) did not correspond with the expected presence of more than one resistance mechanisms. Most of the isolates possessed only one of the genes responsible for a particular chemotherapeutic resistance. It was confirmed that it is possible to monitor the presence of resistance genes directly in activated sludge using PCR. Due to the limited isolates number used in the experiment these results should be regarded as preliminary.

Go to article

Authors and Affiliations

Aleksandra Ziembińska-Buczyńska
Ewa Felis
Justyna Folkert
Anna Meresta
Dominika Stawicka
Anna Gnida
Joanna Surmacz-Górska
Download PDF Download RIS Download Bibtex

Abstract

A new method for measurement of sludge blanket height (SBH) based on image analysis is presented. The proposed method uses a histogram back-projection algorithm to distinguish between the settling sludge and supernatant and can be used with sludge possessing different coloring characteristics both in the sludge color and the color of supernatant produced. Individual pixels in the acquired image are compared with a histogram of a representative sludge region. Therefore, the proposed method relies neither on the assumed shape of light intensity profile nor on the dominant sludge or supernatant color. Batch sedimentation tests are presented for different initial sludge concentrations and different background colors to simulate different sludge characteristics. Parameters of a settling velocity function are estimated based on the obtained results. Additionally, an algorithm is proposed that enables the zone settling velocity (ZSV) to be estimated before the batch sedimentation test is completed.

Go to article

Bibliography

  1.  M. Henze, P. Harremoës, J.C. Jansen, and E. Arvin, Wastewater treatment, Springer-Verlag, Berlin, 1995.
  2.  M. Metzger, “Mathematical model of sequentially controlled activated sludge processes”, Arch. of Cont. Sci. 9(3‒4), 111‒133 (1999).
  3.  J.Ph. Chancelier, M. Cohen de Lara, C. Joannis, and F. Pacard, “New insights in dynamic modeling of a secondary settler – I. Flux theory and steady-states analysis”, Wat. Res. 31(8), 1847‒1856 (1997).
  4.  H. Gao and M.K. Stenstrom, “Generalizing the effects of the baffling structures on the buoyancy-induced turbulence in secondary settling tanks with eleven different geometries using CFD models”, Chem. Eng. Res. Design. 143, 215‒225 (2019).
  5.  M. T. Shah et al., “A novel settling tank for produced water treatment: CFD simulations and PIV experiments”, J. Petro. Sci. Eng. 182, 106352 (2019)
  6.  E. Asensi, E. Alemany, P. Duque-Sarango, and D. Aguado, “Assessment and modelling of the effect of precipitated ferric chloride addition on the activated sludge settling properties”, Chem. Eng. Res. Design. 150, 14‒25 (2019).
  7.  X. Kang, Z. Xia, J. Wang, and W. Yang, „A novel approach to model the batch sedimentation and estimate the settling velocity, solid volume fraction, and floc size of kaolinite in concentrated solution”, Colloid Surf. A 579, 123647 (2019).
  8.  J. Wiora, A. Kozyra, and A. Wiora, “Towards automation of measurement process of surface water parameters by remote-controlled catamaran”, Bull. Pol. Ac.: Tech. 65(3), 351‒359 (2017).
  9.  R. Aguilar-López and I. Neria-González, “Controlling continuous bioreactor via nonlinear feedback: modelling an dsimulations approach”, Bull. Pol. Ac.: Tech. 64(1), 235‒241 (2016).
  10.  G.A. Ekama, et al., “Secondary settling tanks: theory, modeling, design and operation. of sludge sedimentation parameters”, IAWQ Scientific and Technical Report No. 6, IAWQ, London. 1997.
  11.  P.A. Vesilind, “Theoretical considerations: Design of prototype thickeners from batch settling tests”, Wat. Sew. Wks. 115(7), 302‒307 (1968).
  12.  I. Takács, G.G. Patry, and D. Nolasco, “A dynamic model of the clarification-thickening process”, Wat. Res. 25(10), 1263‒1271 (1991).
  13.  P. Grassia, S.P. Usher, and P.J. Scales, “Closed-form solution for batch settling height from model settling flux functions”, Chem. Engng. Sci. 66(5), 964‒972 (2011).
  14.  A. Vanderhasselt and P.A. Vanrolleghem, “Estimation of sludge sedimentation parameters from single batch settling curve”, Wat. Res. 34(2), 395‒406 (2000).
  15.  P. Vanrolleghem, et al., “On-line quantification of settling properties with in-sensor-experiments in an automated settlometer”, Wat. Sci. Tech. 33(1), 37‒51 (1996).
  16.  X. Lu, et al. “Automatic monitoring and quantitative characterization of sedimentation dynamics for non-homogenous systems based on image profile analysis”, Powder Technol. 281, 49‒56 (2015).
  17.  W. Suchecki, “Investigation of the sedimentation process using flow visualization methods”, Chem. And Proc. Eng. 40(2), 223‒233 (2019).
  18.  Y.J. Kim, S.J. Choi, H. Bae, and C.W. Kim, “Sludge settleability detection using automated SV30 measurement and its application to a field WWTP”, Wat. Sci. Technol. 64(8), 1743‒1749 (2011).
  19.  N. Derlon, Ch. Thürlimann, D. Dürrenmatt, and K. Villez, “Batch settling curve registration via image data modelling”, Wat. Res. 114, 327‒337 (2017).
  20.  Z-H. Li, D. Han, C-J. Yang, T-Y Zhang, and H-Q. Yu, “Probing operational conditions of mixing and oxygen deficiency using HSV color space”, J. Environ. Manage. 232, 985‒992 (2019)
  21.  Y. Xu, L. Zheng, R. Liu, and X. Dai, “Decyphering color for comprehensive utilization of sludge”, Resour. Conserv. Recycl. 153, 104579 (2020).
  22.  S.M. Pizer, et al., ”Adaptive histogram equalization and its variations”, Comp. Vis. Grap. Img. Proc. 39(3), 355‒368 (1987).
  23.  M.J. Swain and D.H. Ballard, “Color indexing”, Int. J. Comput. Vis. 7, 11‒32 (1991).
  24.  W. Niblack, An introduction to digital image processing, 1st English ed., Prentice Hall, 1986.
Go to article

Authors and Affiliations

Witold Nocoń
1
ORCID: ORCID
Jakub Pośpiech
1
ORCID: ORCID
Jacek Kopciński
2

  1. Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  2. MM Automation, ul. E. Bojanowskiego 27a, 40-772 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work aims to evaluate the treated wastewater from the activated sludge treatment plant in the City of Sidi Bel Ab-bes (North-Western Algeria) which is required for reuse in irrigation. The control of irrigated areas downstream is done based on a pedological study. Physico-chemical analysis such as (pH, BOD5, COD and SS) indicate results in Algerian and international standards required by the WHO. The Sodium Adsorption Ratio and Electrical Conductivity values of the treated wastewater belong to the C3-S1 class. The treated wastewater has a fairly good microbiological quality that meets Algerian standards. The helminth eggs are practically absent. The concentrations of heavy metals are much lower than the limits prescribed in the Algerian decrees. Therefore, the overall processing plant efficiency is satisfactory and has the char-acteristics of a good treated water quality for reuse in the field of irrigation while protecting the environment. The pedolo-gical study of the soil samples shows that the most dominant fraction is undeveloped calcimagnetic. The planned irrigation plain covers an area of about two thousand hectares. Depending on the crops to irrigate; the development and nature of the necessary or recommended improvements, the proposed irrigation perimeter could be classified into five categories in which only three categories are irrigable. Water projects have been proposed to ensure the irrigation of three subdivided sectors.

Go to article

Authors and Affiliations

Zakari Mahfoud
Download PDF Download RIS Download Bibtex

Abstract

The objective of this experimental study was to examine whether an assisting layer of lightweight expanded clay aggregate (LECA) of the granulation 1–4 mm, introduced into a subsoil, is able to improve an efficiency of removal of total nitrogen and total phosphorus from domestic wastewater. In the investigations, an assisting 0.10 and 0.20 m thick LECA layer was applied. It has been observed that the effectiveness of removal of total suspended solids (TSS), total nitrogen and total phosphorus from wastewater as well as the level of biochemical oxygen demand ( BOD 5) and chemical oxygen demand ( COD) is in accordance with the Polish standards on wastewater disposal into grounds and surface water. The performed experiments showed that the effectiveness of raw wastewater purification for the medium sand soil bed with the 0.20 m thick assisting LECA layer is higher than for the 0.10 m thick assisting layer. In the medium sand soil bed with the 0.20 m thick assisting LECA layer, the removal efficiency regarding total nitrogen increased by 20.6%, total phosphorus by 5.2%, ammonium nitrogen by 8.8% and TSS by 5.3%, and reduction efficiency regarding BOD 5 increased by 1.7% and COD by 2.3% with relation to the 0.10 m thick assisting LECA layer (all percentages – in average). The results of the experiment showed that the LECA with the granulation 1–4 mm can be used to assist in removal of total nitrogen and total phosphorus from wastewater with application of infiltration drainage.
Go to article

Authors and Affiliations

Marek Kalenik
1
ORCID: ORCID
Piotr Wichowski
1
ORCID: ORCID
Marek Chalecki
2
ORCID: ORCID
Adam Kiczko
1
ORCID: ORCID

  1. Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Department of Hydraulics and Sanitary Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
  2. Warsaw University of Life Sciences – SGGW, Institute of Civil Engineering, Department of Mechanics and Building Structures, Warsaw, Poland

This page uses 'cookies'. Learn more