Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Dust generated at an electric arc furnace during steel production industry is still not a solved problem. Electric arc furnace dust (EAF) is a hazardous solid waste. Sintering of well-prepared briquetted mixtures in a shaft furnace is one of possible methods of EAFD utilisation. Simultaneously some metal oxides from exhaust gases can be separated. In this way, various metals are obtained, particularly zinc is recovered. As a result, zinc-free briquettes are received with high iron content which can be used in the steelmaking process. The purpose of the research was selecting the appropriate chemical composition of briquettes of the required strength and coke content necessary for the reduction of zinc oxide in a shaft furnace. Based on the results of the research the composition of the briquettes was selected. The best binder hydrated lime and sugar molasses and the range of proper moisture of mixture to receive briquettes of high mechanical strength were also chosen and tested. Additionally, in order to determine the thermal stability for the selected mixtures for briquetting thermal analysis was performed. A technological line of briquetting was developed to apply in a steelworks.

Go to article

Authors and Affiliations

Aneta Magdziarz
Monika Kuźnia
Michał Bembenek
Paweł Gara
Marek Hryniewicz
Download PDF Download RIS Download Bibtex

Abstract

Zinc oxide (ZnO) has been applied for many years in the production of pigs to reduce the number of diarrhoea in weaned piglets. In June 2022, the European Union banned the use of zinc oxide (ZnO) in pig feed. According to scientific reports, the may reason was the accumulation of this microelement in the environment of pig production. It has been shown that frequent application of ZnO can lead to increased antibiotic resistance in pathogenic swine microflora. The main alternatives to ZnO are probiotics, prebiotics, organic acids, essential oils, and liquid feeding systems.
Alternatives to ZnO can be successfully used in pig production to reduce the number of diarrhoea among piglets during the postweaning period. Additional reports indicated that bacteriophage supplementation has a positive effect on the health of pigs. The article provides an overview of current ZnO substitutes that can be used in pig farming.
Go to article

Authors and Affiliations

Z. Pejsak
1
P. Kaźmierczak
2
A.F. Butkiewicz
2
J. Wojciechowski
3
G. Woźniakowski
4

  1. University Center of Veterinary Medicine JU-AU, Mickiewicza Avenue 24/28, 30-059 Krakow, Poland
  2. Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
  3. Private Veterinary Practice, Grabowa 3, 86-300 Grudziadz, Poland
  4. Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the idea to improve the performance of thin film photovoltaic cells by a light capture enhancement through the introduction of down shifting energy converters. Luminescent down shifting layers convert high-energy photons (UV light) into low-energy ones (visible light), which are more efficient in a photovoltaic conversion. For this purpose, the application of a thin layer composed of zinc oxide (ZnO) nanoparticles deposited onto a thin film solar cell is proposed. The paper presents both experimental and theoretical results of this approach. Conducted investigations include an analysis of ZnO nanoparticle layers, deposited in two independent technology methods. The results showed that ZnO nanoparticles have a great potential of application as down converting layers and can be implemented to improve the efficiency of photovoltaic cells, especially in the field of thin film PV structures. The proposed new deposition method can potentially be used in some industrial photovoltaic applications.

Go to article

Authors and Affiliations

K. Znajdek
Maciej Sibiński
ORCID: ORCID
Z. Lisik
A. Apostoluk
Y. Zhu
B. Masenelli
P. Sędzicki
Download PDF Download RIS Download Bibtex

Abstract

A n-type semiconductor ZnO has high transmittance features, excellent chemical stability and electrical properties. It is also commonly used in a range of fields, such as gas sensors, photocatalysts, optoelectronics, and solar photocell. Magnesium-doped zinc oxide (Mg-ZnO) nano powders were effectively produced using a basic chemical precipitation process at 45°C. Calcined Mg-ZnO nano powders have been characterized by FTIR, XRD, SEM-EDX and PL studies. XRD measurements from Mg-ZnO revealed development of a crystalline structure with an average particle size of 85 nm and SEM analysis confirmed the spherical morphology. Electrochemical property of produced Mg-ZnO nanoparticles was analyzed and the specific capacitance value of 729 F g–1 at 0.5 A g–1 current density was recorded and retained a specific capacitance ~100 percent at 2 A g–1 current density.
Go to article

Bibliography

[1] M . Kim, K.-J. Kim, S.-J. Lee, H.-M. Kim, S.-Y. Cho, M.-S. Kim, S.-H. Kim, K.-B. Kim, ACS Appl. Mater. Interfaces 9 (1), 701-709 (2017). DOI: https://doi.org/10.1021/acsami.6b12622
[2] S. Choi, S. I. Han, D. Kim, T. Hyeon, D.-H. Kim, Chem. Soc. Rev. 48 (6), 1566-1595 (2019). DOI: https://doi.org/10.1039/C8CS00706C
[3] L .H. Madkour, in Nanoelectron. Mater. Springer, 605-699 (2019). DOI: https://doi.org/10.1007/978-3-030-21621-4_16
[4] M . Rafique, M. B. Tahir, I. Sadaf, in Adv. Res. Nanosci. Water Technol. Springer, 95-131 (2019). DOI: https://doi.org/10.1007/978-3-030-02381-2_5
[5] T. Xiao, J. Huang, D. Wang, T. Meng, X. Yang, Talanta 206, 120210 (2020). DOI: https://doi.org/10.1016/j.talanta.2019.120210
[6] Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie, Q. Liu, Y. Wang, J. Wu, X. Wang, J. Tu, Adv. Energy Mater. 9 (8), 1803342 (2019). DOI: https://doi.org/10.1002/aenm.201803342
[7] F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, R. Soc. Open Sci. 6 (2), 181764 (2019). DOI: https://doi.org/10.1098/rsos.181764
[8] M .M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, N. Amin, Z. Zhang, Z. Imran, M.I. Yousuf, Appl. Nanosci. 10 (2), 421-433 (2020). DOI: https://doi.org/10.1007/s13204-019-01199-8
[9] H . Zeng, X. Zhao, F. Zhao, Y. Park, M. Sillanpää, Chem. Eng. J. 382, 122972 (2020). DOI: https://doi.org/10.1016/j.cej.2019.122972
[10] L . Zheng, F. Teng, X. Ye, H. Zheng, X. Fang, Adv. Energy Mater. 10 (1), 1902355 (2020). DOI: https://doi.org/10.1002/aenm.201902355
[11] M . Periyasamy, A. Kar, J. Mater. Chem. C 8 (14), 4604-4635 (2020). DOI: https://doi.org/10.1039/C9TC06469A
[12] S.K. Gupta, S. Gupta, A.K. Gupta, Adv. Sci. Eng. Med. 12 (1), 11-26 (2020). DOI: https://doi.org/10.1166/asem.2020.2516
[13] Z. Li, A. Khajepour, J. Song, Energy 182, 824-839 (2019). DOI: https://doi.org/10.1016/j.energy.2019.06.077
[14] S.A. Hashmi, N. Yadav, M.K. Singh, Polym. Electrolytes Charact. Tech. Energy Appl. 231-297 (2020). DOI: https://doi.org/10.1002/9783527805457.ch9
[15] X. Kong, L. Yang, Z. Cheng, S. Zhang, Materials 13 (1), 180 (2020). DOI: https://doi.org/10.3390/ma13010180
[16] B. Zhao, F. Mattelaer, J. Kint, A. Werbrouck, L. Henderick, M. Minjauw, J. Dendooven, C. Detavernier, Electrochimica Acta 320, 134604 (2019). DOI: https://doi.org/10.1016/j.electacta.2019.134604
[17] Y. Wang, C. Ma, C. Wang, P. Cheng, L. Xu, L. Lv, H. Zhang, Sol. Energy 189, 412-420 (2019). DOI: https://doi.org/10.1016/j.solener.2019.07.082
[18] J. Jiang, S. Liu, Y. Wang, Y. Liu, J. Fan, X. Lou, X. Wang, H. Zhang, L. Yang, Chem. Eng. J. 359, 746-759 (2019). DOI: https://doi.org/10.1016/j.cej.2018.11.190
[19] H .M.A. Javed, W. Que, M.R. Ahmad, K. Ali, M.I. Ahmad, A. ul Haq, S.K. Sharma, in Sol. Cells (Springer, 2020), pp. 25-54. DOI: https://doi.org/10.1007/978-3-030-36354-3
[20] S.E. Arasi, P. Devendran, R. Ranjithkumar, S. Arunpandiyan, A. Arivarasan, Mater. Sci. Semicond. Process. 106, 104785 (2020). DOI: https://doi.org/10.1016/j.mssp.2019.104785
[21] H .-C. Chen, Y.R. Lyu, A. Fang, G.J. Lee, L. Karuppasamy, J.J. Wu, C.K. Lin, S. Anandan, C.Y. Chen, Nanomaterials 10 (3), 475 (2020). DOI: https://doi.org/10.3390/nano10030475
[22] N . Sivakumar, J. Gajendiran, R. Jayavel, Chem. Phys. Lett. 745, 137262 (2020). DOI: https://doi.org/10.1016/j.cplett.2020.137262
[23] M .A.F. Mohd Shaifuddin, C.A. Che Abdullah, S.H. Ribut, N.S. Rosli, R. Mohd Zawawi, Malays. J. Sci. Health Technol. (2019). https://oarep.usim.edu.my/jspui/handle/123456789/5353
[24] G. Wu, Y. Song, J. Wan, C. Zhang, F. Yin, J. Alloys Compd. 806, 464-470 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.07.175
[25] S. Kasap, I.I. Kaya, S. Repp, E. Erdem, Nanoscale Adv. 1 (7), 2586-2597 (2019). DOI: https://doi.org/10.1039/C9NA00199A
[26] U . Bhat, S. Meti, Graphene-Based ZnO nanocomposites for Supercapacitor Applications in Graphene as Energy Storage Materials for Supercapacitors, Eds. Inamuddin, Rajender Boddula, Mohammad Faraz Ahmer and Abdullah M. Asiri, Materials Research Foundations 64, 181 (2020). DOI: https://doi.org/10.21741/9781644900550-7
[27] M . Ghosh, S. Mandal, A. Roy, S. Chakrabarty, G. Chakrabarti, S.K. Pradhan, Mater. Sci. Eng. C 106, 110160 (2020). DOI: https://doi.org/10.1016/j.msec.2019.110160
[28] R . Subbiah, S. Muthukumaran, V. Raja, Optik 164556 (2020). DOI: https://doi.org/10.1016/j.ijleo.2020.164556
[29] R . Sánchez-Tovar, E. Blasco-Tamarit, R.M. Fernández-Domene, M. Villanueva-Pascual, J. García-Antón, Surf. Coat. Technol. 125605 (2020). DOI: https://doi.org/10.1016/j.surfcoat.2020.125605
[30] N . Jayaprakash, R. Suresh, S. Rajalakshmi, S. Raja, E. Sundaravadivel, M. Gayathri, M. Sridharan, Mater. Technol. 35 (2), 112-124 (2020). DOI: https://doi.org/10.1080/10667857.2019.1659533
[31] M . Achehboune, M. Khenfouch, I. Boukhoubza, B.M. Mothudi, I. Zorkani, A. Jorio, J. Mater. Sci. Mater. Electron. 31 (6), 4595- 4604 (2020). DOI: https://doi.org/10.1007/s10854-020-03011-8
[32] C.V. Thulasi-Varma, B. Balakrishnan, H.-J. Kim, J. Ind. Eng. Chem. 81, 294-302 (2020). DOI: https://doi.org/10.1016/j.jiec.2019.09.017
[33] J. Yus, B. Ferrari, A.J. Sanchez-Herencia, Z. Gonzalez, Electrochimica Acta 335, 135629 (2020). DOI: https://doi.org/10.1016/j.electacta.2020.135629
[34] N . Liu, Z. Pan, X. Ding, J. Yang, G. Xu, L. Li, Q. Wang, M. Liu, Y. Zhang, J. Energy Chem. 41, 209-215 (2020). DOI: https://doi.org/10.1016/j.jechem.2019.05.008
[35] M . Bolsinger, M. Weller, S. Ruck, P. Kaya, H. Riegel, V. Knoblauch, Electrochimica Acta. 330, 135163 (2020). DOI: https://doi.org/10.1016/j.electacta.2019.135163
[36] H . Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan, B. Fei, F. Pan, Nano Energy 70, 104523 (2020). DOI: h ttps://doi.org/10.1016/j.nanoen.2020.104523
Go to article

Authors and Affiliations

S. Arul
1
ORCID: ORCID
T. Senthilnathan
2
ORCID: ORCID
V. Jeevanantham
3
ORCID: ORCID
K.V. Satheesh Kumar
4
ORCID: ORCID

  1. Jai Shriram Engineering College, Department of Physics, Tirupur-638660, Tamilnadu, India
  2. Sri Venkateshwara College of Engineering, Department of Applied Physics, Sriperumbudur-602117, Tamilnadu, India
  3. Vivekanandha College of Arts & Sciences for Women, Department of Chemistry, Tiruchengode 637205, Tamilnadu, India
  4. Kongu Engineering College, Department of Mechanical Engineering, Erode-638060, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

In this work, zinc oxide (ZnO) thin films are deposited on glass substrate using the sol-gel spin coating technique. The effect of annealing temperature on structural properties was investigated. The ZnO sol-gel was produced from zinc acetate dehydrate as the starting material with iso-propanol alcohol as the stabilizer. The ratio was controlled, distilled water and diethanolamine as the solvent mixing on a magnetic stirrer for an hour under constant heat of 60°C. The ZnO thin film was deposited using the spin coating technique with the speed of 3000 rpm for 30 minutes before the sample undergoes pre-heat in the oven at the temperature of 100°C for 10 minutes. The sample was annealing in the furnace for an hour at 200°C, 350°C, and 500°C. The X-ray diffraction (XRD) analysis confirms that hexagonal wurtzite structure with zincite and zinc acetate hydroxide hydrate composition. The thin films surface roughness was analyzed using an atomic force microscope (AFM) and scanning electron microscope (SEM) for surface morphology observation.
Go to article

Authors and Affiliations

R. Hussin
1 2 3
ORCID: ORCID
F. Hanafi
2
R.A. Rashid
1
Z. Harun
2 4
Z. Kamdi
2
S.A. Ibrahim
1 4
A.R. Ainuddin
2
W. Rahman
5 3
A.M. Leman
1 3

  1. Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Department of Mechanical Engineering Technology, Jalan Edu Hub Gunasama1, Pagoh Edu Hub, KM1, Jln Panchor, 84600 Pagoh Johor, Malaysia
  2. Universiti Tun Hussein Onn Malaysia, Faculty of Mechanical and Manufacturing Engineering, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
  3. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  4. Universiti Tun Hussein Onn Malaysia, Faculty of Mechanical and Manufacturing Engineering, Integrated Material and Process, Advanced Manufacturing & Materials Centre, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
  5. Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The employment of green synthesized nanomaterials for water pollution prevention is increasing nowadays. Herein, Mn-doped ZnO nanoparticles were synthesized using Peganum Harmala seed extract and subsequently used for crystal violet (CV) dye removal from aqueous solutions. The first part of the study describes the preparation of the adsorbent (Mn-ZnO NPs) using a simple coprecipitation method. The surface properties of the material were characterized by Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The second part investigates the adsorption of CV dye onto the surface of the prepared Mn-ZnO NPs. Additionally, the isotherm,kinetics, and thermodynamics of the adsorption process were studied in detail. Batch adsorption analysis was carried out by evaluating different parameters, such as the amount of the adsorbent (0.01g to 0.04 g), CV concentration (20 to 80 mg/L), adsorption time (30 to 120 min), and temperature (35 to 65 ⁰C). The maximum CV dye adsorption capacity of the Mn-ZnO NPs was 45.60 mg/g. The thermodynamic study revealed the spontaneous, exothermic, and feasible nature of the adsorption process, primarily driven by physical forces. Kinetic and isotherm analyses indicated that the adsorption of the dye best fit the Freundlich isotherm and pseudo-second-order models, respectively. Mn-doped ZnO is considered an effective adsorbent for CV, benefiting from its rapid and easy preparation, non-toxic nature, and 94 % adsorption efficiency. The material holds potential for future applications in the removal of organic dyes from wastewater.
Go to article

Bibliography

  1. Aboud, A. A., Bukhari, Z. & Al-Ahmadi, A. N. (2023). Enhancement of UV detection properties of ZnO thin films via Ni doping. Physica Scripta, 98(6), 065938. DOI:10.1088/1402-4896/acd284
  2. Aboud, A. A., Shaban, M. & Revaprasadu, N. (2019). Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films. RSC Advances, 9(14), pp. 7729–7736. DOI:10.1039/C8RA10599E
  3. Ahmadi, S. & Ganjidoust, H. (2021). Using banana peel waste to synthesize BPAC/ZnO nanocomposite for photocatalytic degradation of Acid Blue 25: Influential parameters, mineralization, biodegradability studies. Journal of Environmental Chemical Engineering, 9(5), 106010. DOI:10.1016/J.JECE.2021.106010
  4. Ahmed, S. A. (2017). Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics, 7, pp. 604–610. DOI:10.1016/j.rinp.2017.01.018
  5. Aigbe, U. O. & Osibote, O. A. (2024). Green synthesis of metal oxide nanoparticles, and their various applications. Journal of Hazardous Materials Advances, 13, 100401. DOI:10.1016/J.HAZADV.2024.100401
  6. Al-Kahlout, A. (2012). ZnO nanoparticles and porous coatings for dye-sensitized solar cell application: Photoelectrochemical characterization. Thin Solid Films, 520(6), pp, 1814–1820. DOI:10.1016/j.tsf.2011.08.095
  7. Alsaiari, R. (2022). Removal of cobalt (II) ions from aqueous solution by Peganum Harmala seeds. Indian Journal of Chemical Technology (Vol. 29).
  8. Alsaiari, R., Alqadri, F., Shedaiwa, I. & Alsaiari, M. (2021). Peganum Harmala plant as an adsorbent for the removal of Copper(II) ions from water. In Indian Journal of Chemical Technology (Vol. 28).
  9. Alsaiari, R., Shedaiwa, I., Al-Qadri, F. A., Musa, E. M., Alqahtani, H., Alkorbi, F., Alsaiari, N. A. & Mohamed, M. M. (2024). Peganum Harmala L. plant as green non-toxic adsorbent for iron removal from water. Archives of Environmental Protection, 50(1), pp. 3–12. DOI:10.24425/aep.2024.149894
  10. Aregawi, B. H. & Mengistie, A. A. (2013). Removal of Ni(II) from aqueous solution using leaf, bark and seed of moringa stenopetala adsorbents. Bulletin of the Chemical Society of Ethiopia, 27(1), pp. 35–47. DOI:10.4314/bcse.v27i1.4
  11. Bououdina, M., Omri, K., El-Hilo, M., El Amiri, A., Lemine, O. M., Alyamani, A., Hlil, E. K., Lassri, H. & El Mir, L. (2014). Structural and magnetic properties of Mn-doped ZnO nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 56, pp. 107–112. DOI:10.1016/j.physe.2013.08.024
  12. Castañeda, D., Muñoz H., G. & Caldiño, U. (2005). Local structure determination of Mn2+ in CaCl 2:Mn2+ by optical spectroscopy. Optical Materials, 27(8), pp. 1456–1460. DOI:10.1016/j.optmat.2004.10.009
  13. Chen, L., Cui, Y., Xiong, Z., Zhou, M. & Gao, Y. (2019). Chemical functionalization of the ZnO monolayer: Structural and electronic properties. RSC Advances, 9(38), pp. 21831–21843. DOI:10.1039/c9ra03484f
  14. Darroudi, M., Sabouri, Z., Kazemi Oskuee, R., Khorsand Zak, A., Kargar, H. & Hamid, M. H. N. A. (2013). Sol-gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceramics International, 39(8), pp. 9195–9199. DOI:10.1016/j.ceramint.2013.05.021
  15. Elsayed, A. E., Osman, D. I., Attia, S. K., Ahmed, H. M., Shoukry, E. M., Mostafa, Y. M. & Taman, A. R. (2020). A study on the removal characteristics of organic and inorganic pollutants from wastewater by low cost biosorbent. Egyptian Journal of Chemistry, 63(4), pp. 1429–1442. DOI:10.21608/ejchem.2019.15710.1950
  16. Fahmy, S. A., Fawzy, I. M., Saleh, B. M., Issa, M. Y., Bakowsky, U. & Azzazy, H. M. E. S. (2021). Green synthesis of platinum and palladium nanoparticles using Peganum harmala L. Seed alkaloids: Biological and computational studies. Nanomaterials, 11(4). DOI:10.3390/nano11040965
  17. Fekri, R., Mirbagheri, S. A., Fataei, E., Ebrahimzadeh-Rajaei, G. & Taghavi, L. (2022). Green synthesis of CuO nanoparticles using Peganum harmala extract for photocatalytic and sonocatalytic degradation of reactive dye and organic compounds. Main Group Chemistry, 21(4), pp. 975–996. DOI:10.3233/MGC-220045
  18. Freundlich, H. M. F. (1906). Over the adsorption in solution. J. Phys. Chem, 57, pp. 385–471.
  19. Ghasemi, M., Ghasemi, N., Zahedi, G., Alwi, S. R. W., Goodarzi, M. & Javadian, H. (2014). Kinetic and equilibrium study of Ni(II) sorption from aqueous solutions onto Peganum harmala-L. International Journal of Environmental Science and Technology, 11(7), pp. 1835–1844. DOI:10.1007/s13762-014-0617-9
  20. Gul, S., Afsar, S., Gul, H. & Ali, B. (2023). Removal of crystal violet dye from wastewater using low-cost biosorbent Trifolium repens stem powder. Journal of the Iranian Chemical Society, 20(11), pp. 2781–2792. DOI:10.1007/s13738-023-02875-x
  21. Homagai, P. L., Poudel, R., Poudel, S. & Bhattarai, A. (2022). Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon, 8(4). DOI:10.1016/j.heliyon.2022.e09261
  22. Jadoun, S., Yáñez, J., Aepuru, R., Sathish, M., Jangid, N. K. & Chinnam, S. (2024). Recent advancements in sustainable synthesis of zinc oxide nanoparticles using various plant extracts for environmental remediation. Environmental Science and Pollution Research, 31(13), pp. 19123–19147. DOI:10.1007/s11356-024-32357-3
  23. Kasbaji, M., Ibrahim, I., Mennani, M., abdelatty abuelalla, O., fekry, S. S., Mohamed, M. M., Salama, T. M., Moneam, I. A., Mbarki, M., Moubarik, A. & Oubenali, M. (2023). Future trends in dye removal by metal oxides and their Nano/Composites: A comprehensive review. Inorganic Chemistry Communications, 158, 111546. DOI:DOI:10.1016/j.inoche.2023.111546
  24. Khan, Z. R., Khan, M. S., Zulfequar, M. & Shahid Khan, M. (2011). Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method. Materials Sciences and Applications, 02(05), pp. 340–345. DOI:10.4236/msa.2011.25044
  25. Kumar, P. & Kirthika, K. (2010). Kinetics and equilibrium studies of Zn2+ ions removal from aqueous solutions by use of natural waste. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(1), 264.
  26. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), pp. 2221–2295. DOI:10.1021/ja02268a002
  27. Lemecho, B. A., Sabir, F. K., Andoshe, D. M., Gultom, N. S., Kuo, D. H., Chen, X., Mulugeta, E., Desissa, T. D. & Zelekew, O. A. (2022). Biogenic Synthesis of Cu-Doped ZnO Photocatalyst for the Removal of Organic Dye. Bioinorganic Chemistry and Applications. DOI:10.1155/2022/8081494
  28. Liu, Y. X., Liu, Y. C., Shen, D. Z., Zhong, G. Z., Fan, X. W., Kong, X. G., Mu, R. & Henderson, D. O. (2002). Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica. Solid State Communications, 121(9–10), pp. 531–536. DOI:10.1016/S0038-1098(02)00006-6
  29. Mandal, S. K., Das, A. K., Nath, T. K. & Karmakar, D. (2006). Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles. Applied Physics Letters, 89(14). DOI:10.1063/1.2360176
  30. Mehar, S., Khoso, S., Qin, W., Anam, I., Iqbal, A. & Iqbal, K. (2019). Green Synthesis of Zincoxide Nanoparticles from Peganum harmala, and its biological potential against bacteria. Frontiers in Nanoscience and Nanotechnology, 6(1). DOI:10.15761/fnn.1000188
  31. Mote, D.V., Dargad, J.S. & Dole, B.N. (2013). Effect of Mn Doping Concentration on Structural, Morphological and Optical Studies of ZnO Nano-particles. Nanoscience and Nanoengineering, 1(2), pp. 116–122. DOI:10.13189/nn.2013.010204
  32. Owoeye, S. S., Toludare, T. S., Isinkaye, O. E. & Kingsley, U. (2019). Influence of waste glasses on the physico-mechanical behavior of porcelain ceramics. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 58(2), pp. 77–84). DOI:10.1016/j.bsecv.2018.07.002
  33. Paksamut, J. & Boonsong, P. (2018). Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents. IOP Conference Series: Materials Science and Engineering, 317(1). DOI:10.1088/1757-899X/317/1/012058
  34. Paraguay, F., Estrada, W., Acosta, D. R., Andrade, E. & Miki-Yoshida, M. (1999). Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films, 350, pp. 192–202.
  35. Park, D., Lim, S. R., Yun, Y. S. & Park, J. M. (2008). Development of a new Cr(VI)-biosorbent from agricultural biowaste. Bioresource Technology, 99(18), pp. 8810–8818. DOI:10.1016/J.BIORTECH.2008.04.042
  36. Seetawan, U., Jugsujinda, S., Seetawan, T., Ratchasin, A., Euvananont, C., Junin, C., Thanachayanont, C. & Chainaronk, P. (2011). Effect of Calcinations Temperature on Crystallography and Nanoparticles in ZnO Disk. Materials Sciences and Applications, 02(09), pp. 1302–1306. DOI:10.4236/msa.2011.29176
  37. Shaba, E. Y., Jacob, J. O., Tijani, J. O. & Suleiman, M. A. T. (2021). A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Applied Water Science. 11, 48. DOI:10.1007/s13201-021-01370-z
  38. Sharaf, G. & Hassan, H. (2014). Removal of copper ions from aqueous solution using silica derived from rice straw: Comparison with activated charcoal. International Journal of Environmental Science and Technology, 11(6), pp. 1581–1590. DOI:10.1007/s13762-013-0343-8
  39. Singh, B., Shrivastava, S. B. & Ganesan, V. (2016). Effects of Mn Doping on Zinc Oxide Films Prepared by Spray Pyrolysis Technique. International Journal of Nanoscience, 15(3), 1650024-1–8. DOI:10.1142/S0219581X16500241
  40. Solmaz, A., Turna, T. & Baran, A. (2024). Ecofriendly synthesis of selenium nanoparticles using agricultural Citrus fortunella waste and decolourization of crystal violet from aqueous solution. The Canadian Journal of Chemical Engineering, 102(6), pp. 2051–2067. DOI:10.1002/cjce.25179
  41. Sriram, S., Lalithambika, K.C. & Thayumanavan, A. (2017). Experimental and theoretical investigations of photocatalytic activity of Cu doped ZnO nanoparticles. Optik, 139, pp. 299–308. DOI:10.1016/J.IJLEO.2017.04.013
  42. Taha, A. A., Ahmed, A. M., Abdel Rahman, H. H., Abouzeid, F. M. & Abdel Maksoud, M. O. (2017). Removal of nickel ions by adsorption on nano-bentonite: Equilibrium, kinetics, and thermodynamics. Journal of Dispersion Science and Technology, 38(5), pp. 757–767. DOI:10.1080/01932691.2016.1194211
  43. Theyvaraju, D. & Muthukumaran, S. (2015). Preparation, structural, photoluminescence and magnetic studies of Cu doped ZnO nanoparticles co-doped with Ni by sol–gel method. Physica E: Low-Dimensional Systems and Nanostructures, 74, pp. 93–100. DOI:10.1016/J.PHYSE.2015.06.012
  44. Trari, M., Töpfer, J., Dordor, P., Grenier, J. C., Pouchard, M. & Doumerc, J. P. (2005). Preparation and physical properties of the solid solutions Cu 1+xMn1-xO2 (0≤x≤0.2). Journal of Solid State Chemistry, 178(9), pp. 2751–2758. DOI:10.1016/j.jssc.2005.06.009
  45. Ullah, I., Rauf, A., Khalil, A. A., Luqman, M., Islam, M. R., Hemeg, H. A., Ahmad, Z., Al-Awthan, Y. S., Bahattab, O. & Quradha, M. M. (2024). Peganum harmala L. extract-based Gold (Au) and Silver (Ag) nanoparticles (NPs): Green synthesis, characterization, and assessment of antibacterial and antifungal properties. Food Science and Nutrition. 12(6), pp.4459-4472. DOI:10.1002/fsn3.4112
  46. Yang, Z., Ye, Z., Xu, Z. & Zhao, B. (2009). Effect of the morphology on the optical properties of ZnO nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 42(2), pp. 116–119. DOI:10.1016/j.physe.2009.09.010
  47. Yildirimcan, S., Ocakoglu, K., Erat, S., Emen, F. M., Repp, S. & Erdem, E. (2016). The effect of growing time and Mn concentration on the defect structure of ZnO nanocrystals: X-ray diffraction, infrared and EPR spectroscopy. RSC Advances, 6(45), pp. 39511–39521. DOI:10.1039/c6ra04071c
  48. Zafar, M. N., Dar, Q., Nawaz, F., Zafar, M. N., Iqbal, M. & Nazar, M. F. (2019). Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. Journal of Materials Research and Technology, 8(1), pp. 713–725. DOI:10.1016/j.jmrt.2018.06.002
  49. Zhu, Z., Zhao, S. & Wang, C. (2022). Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review. MDPI Molecules, 27(13). DOI:10.3390/molecules27134161
Go to article

Authors and Affiliations

Faeza Alkorbi
1
ORCID: ORCID
Fatima A. Al-Qadri
2
ORCID: ORCID

  1. Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
  2. Department of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen
Download PDF Download RIS Download Bibtex

Abstract

The present study was conducted to evaluate the insecticidal efficiency and safety of zinc oxide nanoparticles (ZnO NPs) and hydrophilic silica nanoparticles (SiO2 NPs) against: adults of rice weevil (Sitophilus oryzae L.); red flour beetle (Tribolium castaneum Herbst.) and cowpea beetle (Callosobruchus maculatus F.) results showed that, both ZnO NPs and hydrophilic SiO2 NPs exhibited a significant toxic effect (df, F and p < 0.5) against S. oryzae and C. maculatus at the highest concentration while T. castaneum showed high resistance against the two tested materials. At the end of the experiment, recorded mortality was: 81.6, 98.3 and 58.3% at the highest concentration used for each insect (0.3, 2 and 8 gm ⋅ kg–1 of SNPs with C. maculatus, S. oryzae and T. castaneum, respectively), while mortality was 88.3, 100 and 38.3% at the highest concentration used for each insect (0.6, 2.5 and 8 gm ⋅ kg–1 of ZnO NPs with C. maculatus, S. oryzae and T. castaneum, respectively). Both tested materials caused high reductions in F1-progeny (%) with C. maculatus and S. oryzae. Histopathological examination of male mice livers showed hepatic architecture with congested blood sinusoids, binucleated hepatocytes nuclei, dilated central vein and margainated chromatin in some nuclei. Histopathological assessment of the lungs showed normal histoarchitecture. There were no differences in alveolar septa, bronchiolar and epithelium of the treated and untreated animals. Silica and zinc oxide nanoparticles have a good potential to be used as stored seed protectant alternatives if applied with proper safety precautions.

Go to article

Authors and Affiliations

Samia Ali Haroun
Mahmoud Elsaid Elnaggar
Doaa Mohamed Zein
Rehab Ibrahim Gad
Download PDF Download RIS Download Bibtex

Abstract

In the current study the antifungal activity of inorganic reagents was tested against Cryphonectria parasitica in vitro in a mycelial growth inhibition test. Three reagents, each consisting of chloride silver (AgCl) in combination with (1) aluminum oxide − Al2O3, (2) zinc oxide − ZnO, and (3) Al2O3 and titanium dioxide – TiO2, were tested. Significant differences of the tested reagents on the growth of C. parasitica were recorded. The study demonstrated that silver in mixture with ZnO had an antifungal effect and significantly reduced the mycelial growth of C. parasitica in vitro. The mixture of AgCl with the other two combinations of inorganic metal oxides had no inhibition effect on the growth of the pathogen. It was confirmed that ZnO (applied in a single compound test) is responsible for inhibition of C. parasitica mycelium growth. A preliminary in planta assay was performed but statistically significant differences were not recorded in the average increment of canker length.

Go to article

Authors and Affiliations

Katarína Adamčíková
Zuzana Jánošíková
Jozef Pažitný
Download PDF Download RIS Download Bibtex

Abstract

Zinc oxide (ZnO) is a prominent n-type semiconductor material used in optoelectronic devices owing to the wide bandgap and transparency. The low-temperature growth of ZnO thin films expands diverse applications, such as growth on glass and organic materials, and it is also cost effective. However, the optical and electrical properties of ZnO films grown at low temperatures may be inferior owing to their low crystallinity and impurities. In this study, ZnO thin films were prepared by atomic layer deposition on SiO2 and glass substrates in the temperature range of 46-141℃. All films had a hexagonal würtzite structure. The carrier concentration and electrical conductivity were also investigated. The low-temperature grown films showed similar carrier concentration (a few 1019 cm−3 at 141°C), but possessed lower electrical conductivity compared to high-temperature (>200°C) grown films. The optical transmittance of 20 nm thin ZnO film reached approximately 90% under visible light irradiation. Additionally, bandgap energies in the range of 3.23-3.28 eV were determined from the Tauc plot. Overall, the optical properties were comparable to those of ZnO films grown at high temperature.
Go to article

Authors and Affiliations

Ji Young Park
1
ORCID: ORCID
Ye Bin Weon
1
ORCID: ORCID
Myeong Jun Jung
1
ORCID: ORCID
Byung Joon Choi
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Material Science and Engineering, Seoul, Korea

This page uses 'cookies'. Learn more