Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper we consider a class of nonlinear autoregressive models in which a specific type of dependence structure between the error term and the lagged values of the state variable is assumed. We show that there exists an equivalent representation given by a p-th order state-dependent autoregressive (SDAR(p)) model where the error term is independent of the last p lagged values of the state variable (y_{t-1},…,y_{t-p}) and the autoregressive coefficients are specific functions of them. We discuss a quasi-maximum likelihood estimator of the model parameters and we prove its consistency and asymptotic normality. To test the forecasting ability of the SDAR(p) model, we propose an empirical application to the quarterly Japan GDP growth rate which is a time series characterized by a level-increment dependence. A comparative analyses is conducted taking into consideration some alternative and competitive models for nonlinear time series such as SETAR and AR-GARCH models.
Go to article

Authors and Affiliations

Fabio Gobbi
1
Sabrina Mulinacci
2

  1. Department of Economics and Statistics, University of Siena, Italy
  2. Department of Statistical Sciences, University of Bologna, Italy
Download PDF Download RIS Download Bibtex

Abstract

This study discusses how to model the noise in a Gravity Recovery and Climate Experiment (GRACE)-Mascon derived Equivalent Water Thicknesses (EWT) time-series. GRACE has provided unique information for monitoring variations in EWT of continents in regional or basin scale since 2002. To analyze a GRACE EWT time-series, a standard harmonic regression model is used, but usually assuming white noise-only stochastic model. However, like almost all kinds of geodetic time-series, it has been shown that the GRACE EWT time-series contains temporal correlations causing colored noise in the data. As well known in geodetic modelling studies, neglecting these correlations leads to underestimating the uncertainties, and so misinterpreting the significancy of the parameter estimates such as trend rate, amplitudes of signals etc. In this study, autoregressive noise modeling, which has some advantageous compared to the approaches and methods frequently applied in geodetic studies, is considered for GRACE EWT time series. For this aim, three important basins, namely theYangtze, Murray–Darling and Amazon basins have been examined. Among some applied autoregressive models, the ARMA(1,1) model is obtained as the best-fitting noise model for analyzing the EWT changes in each basin. The obtained results are discussed in terms of forecasting, significancy and consistency with GRACE-FO mission.
Go to article

Authors and Affiliations

Ozge Gunes
1
ORCID: ORCID
Cuneyt Aydin
1
ORCID: ORCID

  1. Yildiz Technical University, Istanbul, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The work considers a one-dimensional time series protocol packet intensity, measured on the city backbone network. The intensity of the series is uneven. Scattering diagrams are constructed. The Dickie Fuller test and Kwiatkowski-Phillips Perron-Shin-Schmitt test were applied to determine the initial series to the class of stationary or nonstationary series. Both tests confirmed the involvement of the original series in the class of differential stationary. Based on the Dickie Fuller test and Private autocorrelation function graphs, the Integrated Moving Average Autoregression Model model is created. The results of forecasting network traffic showed the adequacy of the selected model.
Go to article

Bibliography

[1] V. S. Maraev, “Time series visualization Tools in space research. Volume 1”, Research of science city, vol. 4, no. 22, 2017
[2] G.G. Kantorovich, “Analysis of temporal rows. Lecture and methodical materials”, Economic Journal of the Higher School of Economics, no. 3, 2002, pp. 379-701.
[3] M. S. Vershinina, “Analysis of assumptions about the stationarity of some temporal series”, Collection of the all-Russian conference on mathematics with international participation "IAC-2018", Barnaul: AltSU University, 2018, pp. 172-176.
[4] R. M. De Jong, C. Amsler, and P. Schmidt, “A robust version of the KPSS test, based on indicators”, J. Econometrics, vol. 137, no. 2, 2007, pp. 311–333.
[5] W. Wojcik, T. Bieganski, A, Kotyra, and A, Smolarz, "Application of forcasting algorithms in the optical fiber coal dust burner monitoring system", Proc. SPIE 3189, Technology and Applications of Light Guides, (5 August 1997); https://doi.org/10.1117/12.285618
[6] K. O. Kizbikenov, “Prognostication and temporary series: textbook by K. O. Kizbikenov”, Barnaul: AltSPU, 2017.
[7] V. S. Korolyuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin (eds.) “Handbook of probability theory and mathematical statistics”, Moscow: Nauka, 2005.
[8] G. Box, G. Jenkins, “Time Series Analysis: Forecasting and Control,” San Francisco: Holden-Day, 1970.
[9] I Rizkya, K Syahputri, R. M.Sari, I. Siregar and J. Utaminingrum, “Autoregressive Integrated Moving Average (ARIMA) Model of Forecast Demand in Distribution Centre,” Department of Industrial Engineering, Faculty of Engineering, Universitas Sumatera Utara in IOP Conf. Series: Materials Science and Engineering 598, 2019, 012071.
[10] N.Albanbay, B.Medetov, M. A. Zaks, “Statistics of Lifetimes for Transient Bursting States in Coupled Noisy Excitable Systems,” Journal of Computational and Nonlinear Dynamics. vol. 15, no. 12, 2020, https://doi.org/10.1115/1.4047867
Go to article

Authors and Affiliations

Tansaule Serikov
1
Аinur Zhetpisbayeva
1
Ainur Аkhmediyarova
2
Sharafat Mirzakulova
3
Aigerim Kismanova
1
Aray Tolegenova
1
Waldemar Wójcik
4

  1. S.Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
  2. Institute of Information and Computational Technologies, Almaty, Kazakhstan
  3. Turan University, Almaty, Kazakhstan
  4. Lublin University of Technology, Poland

This page uses 'cookies'. Learn more