Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an assessment of the mycological air quality in classrooms of school buildings located in Lesser Poland. In 10 schools, 5 sampling points were designated: 4 indoors and 1 as an "outdoor background". A 6-stage Andersen impactor was used to collect fungal aerosol samples. During sampling, dust measurements were made (using the DustTrak II dust meter) as well as temperature and relative humidity. The predominant genera of fungi were determined by the MALDI-TOF MS method. The results indicated no statistically significant differences in indoor air fungal concentrations among the tested locations (p>0.05). The highest concentrations were observed in large classrooms (max. 2,678 CFU∙m-3), however, these differences were not statistically significant across different types of school rooms (Kruskal-Wallis test: p>0.05). All rooms exhibited similar levels of fungal aerosol contamination. Relative air humidity had a significant influence on the number of microorganisms. The most frequently isolated fungi belonged to Cladosporium, Penicillium, and Aspergillus genera. Fungal aerosol concentrations in the tested classrooms did not exceed proposed limit values for this type of indoor environment. The results suggest that natural ventilation in classrooms is insufficient to ensure adequate microbiological quality of indoor air.
Go to article

Bibliography

[1]. Auger, E.J., & Moore-Colyer, M.J.S. (2017). The effect of management regime on airborne respirable dust concentrations in two different types of horse stable design. J. Equine Vet. Sci, 51, pp.105–109. DOI:10.1016/j.jevs.2016.12.007
[2]. Augustyńska, D. & Pośniak, M. (2016). Harmful factors in the working environment: acceptable values. CIOP – PIB, Warszawa. (in Polish)
[3]. Basińska, M. & Michałkiewicz, M. (2016). Variability of microbial air pollution and dust concentration inside and outside a selected school in Poznań. Ecol. Eng. 50, pp. 17–25. DOI:10.12912/23920629/65479
[4]. Brągoszewska, E., Mainka, A., Pastuszka, J.S., Lizończyk, K. & Desta, G.Y (2018). Assessment of Bacterial Aerosol in a Preschool, Primary School and High School in Poland. Atmosphere, 9,87. DOI:10.3390/atmos9030087
[5]. Bulski, K. & Frączek, K. (2021). Mycological Air Quality at Animal Veterinary Practice. Yearbook of Environmental Protection (Rocznik Ochrona Środowiska), 23, pp. 168-179. DOI:10.54740/ros.2021.011
[6]. Canha, N., Almeida, S.M., Carmo Freitas do, C. & Wolterbeek, H.T. (2015) Assessment of bioaerosols in urban and rural primary schools using passive and active sampling methodologies. Arch. Environ. Prot. 41, pp. 11–22. DOI:10.1515/aep-2015-0034
[7]. Chegini, F.M., Baghani, A.N., Hassanvand, M.S., Sorooshian, A., Golbaz, S., Bakhtiari, R., Ashouri, A., Joubani, M.N. & Alimohammadi, M. (2020). Indoor and outdoor airborne bacterial and fungal air quality in kindergartens: Seasonal distribution, genera, levels, and factors influencing their concentration. Build Environ, 175. DOI:10.1016/j.buildenv.2020.106690
[8]. Clauß, M. (2015). Particle size distribution of airborne microorganisms in the environment – a review. Landbauforsch -·Appl. Agric. Forestry Res., 65, pp. 77-100. DOI:10.3220/LBF1444216736000
[9]. Dumała, S.M. & Dudzińska, M.R.., (2013). Microbiological Indoor Air Quality in Polish Schools. Annual Set Environ. Prot., 15, pp. 231-244.
[10]. Ejdys, E. (2009). The influence of atmospheric air on the quality of bioaerosol in school rooms in spring and autumn - mycological assessment. Ochrona Środowiska i Zasobów Naturalnych, 41, pp. 142-150. (in Polish)
[11]. Estillore, A.D., Trueblood, J.V. & Grassian, V.H. (2016). Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci., 7, pp. 6604-6616. DOI:10.1039/c6sc02353c
[12]. Eytyugina, M.G., Alves, C.A., Nunes, T. & Cerqueira, M. (2010). Outdoor/indoor air quality in primary schools in Lisbon: a preliminary study. Quim. Nova, 5, pp. 1145–1149. DOI:10.1590/S0100-40422010000500027
[13]. Faridi, S., Hassanvand, M.S., Naddafi, K., Yunesian, M., Nabizadeh, R., Sowlat, M.H., Kashani, H., Gholampour, A., Niazi, S., Zare, A., Nazmara, S. & Alimohammadi, M. (2015) Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory Environ. Sci. Pollut. Res., 22, pp. 8190–8200. DOI:10.1007/s11356-014-3944-y
[14]. Fang, Z., Yang, H., Li, C., Cheng, L., Zhao, M. & Xie, C. (2021). Prediction of PM2.5 hourly concentrations in Beijing based on machine learning algorithm and ground-based LiDAR. Arch. Environ. Prot., 47(3), pp. 98-107, DOI 10.24425/aep.2021.138468
[15]. Fsadni, P., Frank, B., Fsadni, C. & Montefort, S. (2017). The Impact of Microbiological Pollutants on School Indoor Air Quality. Journal Geoscience and Environment Protection, 5, pp. 54-65. DOI:10.4236/gep.2017.55004
[16]. Gołofit-Szymczak, M. & Górny, R.L. (2010). Bacterial and fungal aerosols in air -conditioned office buildings in Warsaw, Poland – the winter season. Int. J. Occup. Saf. Ergon., 16, pp. 465-476. DOI:10.1080/10803548.2010.11076861
[17]. Gołofit-Szymczak, M., Górny, R.L., Ławniczek-Wałczyk, A., Cyprowski, M. & Stobnicka, A. (2015) Bacteria and fungal aerosols in the work environment of cleaners. Occupational Medicine (Medycyna Pracy), 66(6), pp. 779–791. (in Polish)
[18]. Górny, R.L., Frączek, K. & Ropek, D.R. (2020). Size distribution of microbial aerosols in overground and subterranean treatment chambers at health resorts. J. Environ. Health Sci. Eng., 18(2), pp. 1437-1450. DOI:10.1007/s40201-020-00559-9.
[19]. Górny, R.L. (2019). Microbial aerosols: sources, properties, health effects, exposure assessment – A review. KONA Powder and Particle Journal, 37, pp. 64-84. DOI:10.14356/kona.2020005
[20]. Górny, R.L., Cyprowski, M., Ławniczek-Wałczyk, A., Gołofit-Szymczak, M. & Zapór, L. (2011). Biohazards in the indoor environment – a role for threshold limit values in exposure assessment, [in:] Management of indoor air quality, Dudzińska MR (Ed.). Taylor & Francis Group, London, pp. 1-20.
[21]. Grzyb, J. & Lenart-Boroń, A. (2020) Size distribution and concentration of fungal aerosol in animal premises of a zoological garden. Aerobiol., 36, pp: 233–248. DOI:10.1007/s10453-020-09625-z
[22]. Jiayu, C., Qiaoqiao, R., Feilong, C., Chen, L., Jiguo, W., Zhendong, W., Lingyun, C., Liu, R. & Guoxia, Z. (2019). Microbiology Community Structure in Bioaerosols and the Respiratory Diseases. J. Environ. Sci. Public Health, 3, pp. 347-357. DOI:10.26502/jesph.96120068 23. Jo, W.K. & Seo, Y.J. (2005). Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools, and homes. Chemosphere, 61(11), pp. 1570–1579. DOI:10.1016/j.chemosphere.2005.04.103
[24]. Jurado, S.R., Bankoff, A.D.P., Jurado, S.R., Bankoff, A.D.P. & Sanchez, A. (2014). Indoor Air Quality In Brazilian Universities. Int. J. Env. Res. Pub. Health, 1, pp. 7081-7093. DOI:10.3390/ijerph110707081
[25]. Sanchez, A. (2014). Indoor Air Quality In Brazilian Universities. Int. J. Env. Res. Pub. Health, 1, pp. 7081-7093. DOI:10.3390/ijerph110707081
[26]. Kim, K.H., Kabir, E. & Jahan, S.A. (2018). Airborne bioaerosols and their impact on human health. J. Environ. Sci. (China), 67, pp. 23-35. DOI:10.1016/j.jes.2017.08.027
[27]. Lang-Yona, N., Shuster-Meiseles, T., Mazar, Y., Yarden, O. & Rudich, Y. (2016). Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: outdoor exposure study supported by laboratory experiments. Sci. Total Environ., 541, pp. 365-371. DOI:10.1016/j.scitotenv.2015.09.058
[28]. Lee, J.H. & Jo, W.K. (2006). Characteristic of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environ. Res., 101, pp. 11-17. DOI:10.1016/j.envres.2005.08.009
[29]. Li, Y., Ge, Y., Wu, C., Guan, D., Liu, J. & Wang, F. (2020). Assessment of culturable airborne bacteria of indoor environments in classrooms, dormitories and dining hall at university: a case study in China. Aerobiol., 36, pp. 313–324. DOI:10.1007/s10453-020-09633-z
[30]. Mainka, A., Zajusz-Zubek, E., Kozielska, B. & Brągoszewska, E. (2015). Study of air pollution affecting children in a municipal kindergarten located on a road with heavy traffic. Engineering and Environmental Protection (Inżynieria i Ochrona Środowiska), 18(1), pp. 119-133. (in Polish)
[31]. Piersanti, A., D’Elia, I., Gualtieri, M., Briganti, G., Cappelletti, A., Zanini, G. & Ciancarella, L. (2021). The Italian National Air Pollution Control Programme: Air Quality, Health Impact and Cost Assessment. Atmosphere, 12(2), pp. 196. DOI:10.3390/atmos12020196
[32]. Puspita, I.D., Kamagata, Y., Tanaka, M., Asano, K. & Nakatsu, C.H. (2012). Are uncultivated bacteria really uncultivable? Microbes Environ., 27(4), pp. 356-366. DOI:10.1264/jsme2.ME12092
[33]. Sheik, G.B., Rheam, A.I., Shehri, Z.S. & Otaibi, O.B.M. (2015). Assessment of bacteria and fungi in air from College of Applied Medical Sciences (Male) at AD-Dawadmi, Saudi Arabia. Int. Res. J Biological Sci., 4(9), pp. 49-53.
[34]. Simon, X. & Duquenne, P. (2014). Assessment of workers' exposure to bioaerosols in a French cheese factory. Ann. Occup. Hyg., 58, pp. 677-692. DOI:10.1093/annhyg/meu027
[35]. Wlazło, A., Górny, R.L., Złotowska, R., Ławniczek, A., Łudzień-Izbińska, B., Harkawy A.S., Janczyk, E. (2008). Exposure of employees to selected harmful biological agents in the libraries of the Silesian Voivodship. Occupational Medicine (Medycyna Pracy), 59, pp. 159-170. (in Polish)
Go to article

Authors and Affiliations

Krzysztof Frączek
1
Karol Bulski
1
Maria Chmiel
1
ORCID: ORCID

  1. Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics,Hugo Kołłątaj University of Agriculture, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Microbiological studies were carried out of atmospheric air sampled on the area and in the surroundings of a mechanical and biological wastewater treatment plant (WTP) treating municipal sewage. The capacity of the wastewater treatment plant, which also received some wastewater from the dairy industry, was ca 3· 103 m3d-1. Counts ofheterotrophic psychrophilic, psychrotrophic and mesophilic bacteria as well as some physiological groups of microorganisms which belong to Enterobacteriaceae family, Staphylococcus and Enterococcus genera, Pseudomonas fluorescens and P. aeruginosa species, hemolysing bacteria and actinomycetes were analyzed. Air samples were collected in summer, autumn, winter and spring seasons simultaneously by the sedimentation and impact methods at 6 sites located on the area of the WTP and at 5 sites situated in its surroundings. The background was established depending on the direction of wind, always on the windward side in relation to the location of the WTP. In addition, temperature and air humidity as well as wind speed and direction at each sampling sites were observed. Statistically significant differences were found in studied groups of microorganisms counts between air samples collected in different seasons of the year (with the exception of psychrophilic bacteria and by the two different methods (with the exception of psychrophilic bacteria) and microorganisms which belong to Enterobacteriaceae family). The highest mean counts of the microorganisms were usually determined in air samples collected by the sedimentation method, especially during the autumn (with the exception of actinomycetes, which are the most numerous in spring), the lowest ones in winter and/or in summer. No statistically significant differences were observed in counts of the analyzed groups of microorganisms in air sampled at particular sites (with the exception of Enterobacteriaceae bacteria isolated on Chromocult medium). However, higher counts of these microorganisms were typically found in the air sampled in the area of the WTP, particularly near the grit chamber, phosphorus removal tank, nitrification and denitrification chambers and secondary settling tank. According to the Polish Standards used for evaluation of atmospheric air pollution, the air sampled in the area of wastewater treatment plant and in its surroundings was classified as only slightly and sporadically strongly polluted. It was mainly in the spring and autumn seasons that the air was strongly polluted with psychrophilic and mesophilic bacteria. No increased emission of the analyzed groups of microorganisms, including faecal bacteria was determined in the air samples collected outside the WT
Go to article

Authors and Affiliations

Ewa Korzeniewska
Zofia Filipkowska
Anna Gotkowska-Płachta
Wojciech Janczukowicz
Bartosz Rutkowski

This page uses 'cookies'. Learn more