Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper a two-disc spinning disc reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat discs, located coaxially and parallel to each other with a gap of 0.2 mm between the discs. The upper disc is located on a rotating shaft while the lower disc is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the centre line of rotating disc and stationary disc. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction species transport model by the CFD software ANSYS©Fluent v. 13.0. The effect of the upper disc’s spinning speed is evaluated. The results show that the rotational speed increase causes an increase of TG conversion despite the fact that the residence time decreases. Compared to data obtained from adequate experiments, the model shows a satisfactory agreement.

Go to article

Authors and Affiliations

Zhuqing Wen
Jerzy Petera
Download PDF Download RIS Download Bibtex

Abstract

A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated in the present research. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG) and methanol are injected into the reactor from centres of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction multicomponent transport model with the CFD software ANSYS©Fluent v. 13.0. Effect of operating conditions on TG conversion is particularly investigated. Simulation results indicate that there is occurrence of back flow close to the stator at the outlet zone. Small gap size and fast rotational speed generally help to intensify mixing among reagents, and consequently enhance TG conversion. However, increasing rotational speed of spinning disk leads to more backflow, which decreases TG conversion. Large flow rate of TG at inlet is not recommended as well because of the short mean residence time of reactants inside the reactor.

Go to article

Authors and Affiliations

Zhuqing Wen
Jerzy Petera
Download PDF Download RIS Download Bibtex

Abstract

Diesel generator engines operate in wide load modes; therefore, it is necessary to change the percentage of the mixture of diesel and biodiesel fuel depending on the operating mode of the engine; this ensures its technical performance at the required level in all operating modes, including starting and stopping the engine. This article describes an algorithm for the operation of a diesel generator and an algorithm for determining the composition of the fuel mixture. During the study, the ratio between the components of the mixture changed, taking into account the load modes of operation of the diesel generator, indicators of fuel supply and the formulation of the fuel mixture to ensure optimal values of technical and economic indicators. To assess the efficiency of the flow of working processes in a diesel cylinder, their duration was selected, which is estimated by the duration of the processes of fuel injection, evaporation and combustion. Using the dynamic regulation of the composition of the diesel and biodiesel fuel, the total fuel consumption increased by 5.9%, but the cost of purchasing the fuel is reduced by 10% (at prices as of November 2021) and by 14.6% (based on prices as of the beginning of 2022) compared to engine operation with diesel fuel. This confirms the expediency of using the dynamic adjustment of the composition of the fuel mixture. In addition, even higher economic indicators can be achieved by using an autonomous power plant with a diesel power capacity higher than the generator capacity.
Go to article

Authors and Affiliations

Ihor Kupchuk
1
ORCID: ORCID
Serhii Burlaka
1
ORCID: ORCID
Alexander Galushchak
2
ORCID: ORCID
Tetiana Yemchyk
3
ORCID: ORCID
Dmytro Galushchak
1
Yrii Prysiazhniuk
1
ORCID: ORCID

  1. Engineering and Technology Faculty, Vinnytsia National Agrarian University, Ukraine
  2. Vinnytsia National Technical University, Ukraine
  3. Faculty of Economics and Entrepreneurship, Vinnytsia National Agrarian University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In some areas of the United States (US), asthma prevalence has reached historically unprecedented highs. Three peer-reviewed studies in New York City found prevalence rates among children from 25% to 39%. That is not true in all places. For example, prevalence in Miami, Florida, was estimated to be only 6-10%. A recent study in major cities in Georgia found only 8.5%. One study in California found asthma prevalence was unrelated to local concentrations of criterion pollutants. In the US, all criterion pollutants, including PM2.5, show a downward trend over the last two decades. These facts argue against any significant influence of criterion pollutants in this crisis.These facts suggest that an unrecognized ambient pollutant may be the cause. One important study in southern California in mid-summer measured pulmonary function in children as it was related to outdoor ozone pollution. They found a negative association; higher levels of ozone were associated with improved respiratory function. We call this a "Paradoxical Ozone Association" (POA). Further evidence for a POA appears in seven other studies in Los Angeles, London, Scotland, and southeastern Canada.One plausible explanation for these observations would be the production of methyl nitrite (MN) as an exhaust product of MTB E in gasoline. Unlike ozone, MN is rapidly destroyed by sunlight. All of the POA studies were done in regions with significant methyl ether in gasoline. This explanation is strengthened by the observation that a POA has not been seen in regions without ether in gasoline.A previous A WMA paper proposed a plausible chemical model predicting that MTBE in gasoline will create MN in the exhaust. MN is highly toxic and closely related alkyl nitrites are known to induce respiratory sensitivity in humans. Funding to measure MN has not been available
Go to article

Authors and Affiliations

Peter M. Joseph
Download PDF Download RIS Download Bibtex

Abstract

In this investigation, the surface characteristics of Nickel based superalloy Inconel-625 were evaluated by the electrical discharge machining with used cooking oil-based biodiesel as a dielectric. Nickel-based superalloys find wide applicability in numerous industries due to their specific properties. The Cu electrodes of various densities prepared by atomic diffusion additive manufacturing process were used for machining. A comparison of the performance was made based on average surface roughness. The Design-expert software was used for experimental design and parametric analysis. The outcome demonstrated that bio-dielectric fluid produced improved surface characteristics. The surface roughness was observed to reduce. The surface micrograph obtained from scanning electron microscopy also confirms a better surface finish of bio-dielectric fluid over EDM oil. The surface roughness was shown to be most significantly influenced by the discharge current, with the other parameters having little or no effect. The results showed that for bio-dielectric, the lowest Ra was 0.643 µm, and for EDM oil, the highest value of 0.844 µm. The slightest difference in roughness value for two dielectric fluids was 0.013 µm, and the highest difference was 0.115 µm.
Go to article

Authors and Affiliations

Mohd Yunus Khan
1
ORCID: ORCID
P. Sudhakar Rao
1
ORCID: ORCID
BS. Pabla
1
ORCID: ORCID

  1. National Institute of Technical Teachers Training and Research (NITTTR), Chandigarh, India
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the effect of adding bio-components in the form of methyl esters of corn oil to the milesPLUS diesel oil on its fractional composition. The corn biofuel was produced in-house by using an own-design GW-200 reactor. The diesel fuel evaporated at temperatures ranging from 162 to 352oC. The addition of 7, 20 and 40% of a bio-component in principle does not affect the deterioration of the starting point distillation temperatures. They affect the temperature at the end of distillation to a greater extent, resulting in temperatures exceeding 360oC.
Go to article

Authors and Affiliations

Bolesław Pracuch
Grzegorz Wcisło
Download PDF Download RIS Download Bibtex

Abstract

The study of the possibility of removing organic compounds from wastewater originating from the biodiesel purification stage by two catalytic processes, HSO5-/transition metal and Fenton method has been presented. The source of the ion HSO5- is potassium monopersulphate (2KHSO5·KHSO4·K2SO4) (Oxone) that may be decomposed into radicals (OH., SO4-., SO5-.) by means of transition metal as Co(II). Different concentrations were used for both compounds and the combination ([Co2+] = 1.00μM/[HSO5-] = 5.00·10-2 M) achieved the highest COD removal (60%) and complete decomposition of the oxidant was verified for contact times of 45 min. This process has some advantages comparing to the conventional Fenton method such as the absence of the costly pH adjustment and the Fe(III) hydroxide sludge which characterize this treatment process. The Fenton process showed that the combination of [H2O2] = 2.00M/[Fe2+] = 0.70 M was the best and archived COD removal of 80%. The treatments studied in this research have achieved high COD removal, but the wastewater from the biodiesel purification stage presents very high parametric values of Chemical Oxygen Demand (667,000 mgO2/L), so the final COD concentration reached is still above the emission limit of discharge in surface water, according the Portuguese Law (Decree-Law 236/98). However, both treatments have proved to be feasible techniques for the pre-oxidation of the wastewater under study and can be considered as a suitable pre-treatment for this type of wastewaters. A rough economic analysis of both processes was, also, made.

Go to article

Authors and Affiliations

Teresa Borralho
Solange Coelho
Andreia Estrelo
Download PDF Download RIS Download Bibtex

Abstract

It has been found that the vegetable oils are promising substitute, because of their properties are similar to those of diesel fuel and they are renewable and can be easily produced. However, drawbacks associated with crude vegetable oils are high viscosity, low volatility call for low heat rejection combustion chamber, with its significance characteristics of higher operating temperature, maximum heat release, and ability to handle lower calorific value (CV) fuel etc. Experiments were carried out to evaluate the performance of an engine consisting of different low heat rejection (LHR) combustion chambers such as ceramic coated cylinder head-LHR-1, air gap insulated piston with superni (an alloy of nickel) crown and air gap insulated liner with superni insert - LHR-2; and ceramic coated cylinder head, air gap insulated piston and air gap insulated liner - LHR-3 with normal temperature condition of crude rice bran oil (CRBO) with varied injector opening pressure. Performance parameters (brake thermal efficiency, brake specific energy consumption, exhaust gas temperature, coolant load, and volumetric efficiency) and exhaust emissions [smoke levels and oxides of nitrogen [NOx]] were determined at various values of brake mean effective pressure of the engine. Combustion characteristics [peak pressure, time of occurrence of peak pressure, maximum rate of pressure rise] were determined at full load operation of the engine.

Conventional engine (CE) showed compatible performance and LHR combustion chambers showed improved performance at recommended injection timing of 27°bTDC and recommend injector opening pressure of 190 bar with CRBO operation, when compared with CE with pure diesel operation. Peak brake thermal efficiencyincreased relatively by 7%, brake specific energy consumption at full load operation decreased relatively by 3.5%, smoke levels at full load decreased relatively by 11% and NOx levels increased relatively by 58% with LHR-3 combustion chamber with CRBO at an injector opening pressure of 190 bar when compared with pure diesel operation on CE.

Go to article

Authors and Affiliations

M.V.S. Murali Krishna
N. Durga Prasada Rao
B. Anjeneya Prasad
P.V.K. Murthy

This page uses 'cookies'. Learn more