Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 115
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

One of the basic requirements of the paradigm of sustainable architecture is the use of materials and building systems characterized by low embodied energy. The aim of this paper is to examine the problem of rational design for lower embodied energy of building components and details. To raise the suitable competence of building professionals and stakeholders, the paper recommends some ways of approach to these issues. The reduction in the quantity of applied materials, so called dematerialization, the use of low energy materials for construction, reduced maintenance works, less frequent exchange of components and materials during the building operation, and their higher durability lead to better results in this regard. Some exemplary practical applications of such approach to design of contemporary buildings using the state-of-the art technologies, which strive to be in line with the requirements for sustainability, as well as some other being contradictory to them, have been covered in this paper.
Go to article

Bibliography

[1] A. Stephan, A.Athanassiadis, “Quantifying and mapping embodied environmental requirements of urban building stocks”, Building and Environment, vol. 114, pp. 187–202, 2017.
[2] L. Oberfrancová, J. Legény, and R. Špacek, “Critical thinking in teaching sustainable architecture”, World Transactions on Engineering and Technology Education, vol. 17, no. 2, 2019.
[3] M. Hegger, M. Fuchs, T. Stark, M. Zeumer, “Energy manual”, Sustainable Architecture, Birkhauser, Basel, 2008.
[4] P.J. Davies, S. Emmitt, and S.K. Firth, “Delivering improved initial embodied energy efficiency during construction”, Sustainable Cities and Society, vol. 14, pp. 267–279, 2015, DOI: 10.1016/j.scs.2014.09.010.
[5] M.K. Dixit, “Life cycle recurrent embodied energy calculation of buildings: A review”, Journal of Cleaner Production, vol. 209. pp. 731–754, 2019.
[6] M.K. Dixit, “Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters”, Renewable and Sustainable Energy Reviews, vol. 79, pp. 390–413, 2017.
[7] S. El Khouli, V. John, and M. Zeumer, “Sustainable construction techniques. From structural design to interior fit-out: assessing and improving the environmental impact of buildings”, Edition Detail Green Books, Munich, Germany, 2015.
[8] A. Stephan, Ch.A. Jensen, and R.H. Crawford, “Improving the life cycle energy performance of apartment units through façade design”, Procedia Engineering, vol. 196, pp. 1003–1010, 2016.
[9] A. Rauf, “The effect of building and material service life on building life cycle embodied energy”, The University of Melbourne, pp. 140–148, 2017.
[10] A.M. Moncaster and J.Y. Song, “A comparative review of existing data and methodologies for calculating embodied energy and carbon of buildings”, International Journal of Sustainable Building Technology and Urban Development, vol. 3, no. 1, 2017.
[11] M.K. Dixit, “Embodied energy and cost of building materials: correlation analysis”, Building Research and Information, vol. 45, no. 5, 2017.
[12] R.M. Eufrasio, “The hidden energy of buildings and construction materials”, Zero Carbon Yorkshire BUILDINGS/ AECB, Yorkshire, 2019.
[13] International Energy Agency Evaluation of Embodied Energy and CO2eq for Building Construction (Annex 57), Subtask 2: A Literature Review, August 2016.
[14] R.H. Crawford and A. Stephan, “A comprehensive framework for assessing the life-cycle energy of building construction assemblies”, Architectural Science Review, vol. 53, p. 296, 2017.
[15] A. Stephan, “Towards a comprehensive energy assessment of residential buildings. A multi-scale life cycle energy analysis framework”, PhD. Thesis, Brussels School of Engineering, The University of Melbourne, 2013.
[16] L. Qarout, “Reducing the environmental impacts of building materials: Embodied energy analysis of a highperformance building”, PH.D. Thesis, University ofWisconsin Milwaukee, UWM Digital Commons, May 2017.
[17] R.H. Crawford et al., “Hybrid life cycle inventory methods – A review”, Journal of Cleaner Production, vol. 172, pp. 1273–1288, 2018, DOI: 10.1016/j.jclepro.2017.10.176.
[18] G.P. Hammond and C.I. Jones, “Embodied energy and carbon in construction materials”, Proceedings of the Institution of Civil Engineers, Energy, vol. 161, no. 2, pp. 87–98, 2008, DOI: 10.1680/ener.2008.161.2.87.
[19] T. Woolley, “Low impact building. housing using renewable materials”, Wiley-Blackwell, Chichester, 2013.
[20] Ch.J. Kibert, “Sustainable construction”, Green Building Design and Delivery, 4-th ed., John Wiley and Sons, Hoboken, New Jersey, USA, 2016.
[21] “ISO 15686-1:2011. Buildings and constructed assets – Service life planning – General principles and framework”, ISO, Geneva, 34.
[22] A. Rauf and R.H. Crawford, “Building service life and its effect on the life cycle embodied energy of buildings”, Energy, vol. 79, pp. 140–148, 2008.
[23] R.H. Crawford and A. Stephan, “The significance of embodied energy in certified passive houses”, World Academy of Science, Engineering and Technology, International Journal of Architectural and Environmental Engineering, vol. 7, no. 6, p. 201, 2013.
[24] A. Cotgrave and M. Riley, “Total sustainability in the built environment”, Palgrave Macmillan, New York, 2013.
[25] J.T. Lyle, “Regenerative design for sustainable development”, J. Wiley and Sons, New York, 1994.
[26] L. Swiatek, “Dematerializacja w architekturze: imperatyw projektowania zrównowazonego”, Wydawnictwo Uczelniane ZUT, Szczecin, Poland, 2015.
[27] T. Herzog, R. Krippner, W. Lang, “Façade Construction Manual”, Birkhauser, Basel, 2004.
[28] M. McMullan, “Environmental Science in building”, Palgrave Macmillan, New York, 2012.
[29] L. Krajcsovics, H. Pifko, and S. Jurenka, “Building sustainability assessment method CESBA in Slovak conditions”, 15-th International Multidisciplinary Scientific GeoConference SGEM 2015, SGEM2015 Conference Proceedings, June 18–24, book 6, vol. 2, pp. 385–390, 2015, DOI: 10.5593/SGEM2015/B62/S27.050.
[30] E. Krídlová Burdová et al., “Evaluation of family houses in Slovakia using a building environmental assessment system”, Sustainability, vol. 12, p. 6524, 2020.
[31] A. Hossain, “Assessing the energy efficiency and embodied energy of insulating materials in the UK housing stock”, Cardiff University, UK, 2018, https://www.sustainableplaces.eu/wp-content/uploads/2018/07/SP2018- Hossain-Mourshed_Assessing-the-energy-efficiency-embodied-energy-of-insulation-materials-in-the-UK-hous ing-stock.pdf (accessed on 12.01.2020).
[32] A. Stephan, R.H. Crawford, and K. de Myttenaere, “A comprehensive assessment of the life cycle energy demand of passive houses”, Applied Energy, vol. 112, pp. 23–34, 2020.
[33] E. Schild et al., “Bauschadensverhutung im wohnungsbau schwachstellen”, Bauverlag GmbH,Wiesbaden, Berlin, pp. 1980–1992, 1978.
[34] “BS EN 15978:2011 Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method”, European Committee for Standardization (CEN), Brussels, 2011.
[35] T.J.M. van der Voordt, in Niezabitowska E.D., “Research Methods and Techniques in Architecture”, Routledge, New York, 2018.
[36] E.D. Niezabitowska, “Research methods and techniques in architecture”, Routledge, New York, 2018.
[37] R. Foque, “Building knowledge in architecture”, UPA University Press, Antwerp, 2010.
[38] H.J. Holtzhausen, “Embodied energy and its impact on architectural decisions”, https://www.uj.ac.za/faculties/fada/department%20of-architecture/Documents/Conference%20Paper.doc (accessed on 6.04.2020).
[39] J. Cremers, “Environmental impact of membrane and foil materials and structures – status quo and future outlook”, Technical Transactions. Architecture, vol. 7-A, 2014.
[40] L.A. Robinson, “Structural opportunities of ETFE (Ethylene Tetra Fluoro Ethylene)”, MIT, 2005.
[41] C. Monticelli, et al., “Environmental load of ETFE cushions and futureways for their self-sufficient performances”, in: Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, A. Domingo, C. Lazaro, Proceedings of the International Association for Shell and Spatial Structures. Symposium, Univer sidad Politecnica de Valencia, Spain, pp. 754–766, 2020.
[42] N. Lushnikova, “Approaches to teaching building materials and technologies for energy-efficient sustainable construction”, Budownictwo i Architektura vol. 15, no. 3, 2016, DOI: 10.24358/Bud-Arch_16_153_04.
[43] I. McCaig, “Conservation Basics”, Ashgate Publishing Ltd., English Heritage, London, 2013.
[44] F. Paolini, T. Ferrante, and T. Villani, “Maintenance Systems and Costs for Wooden Façades”, https://www.researchgate.net/publication/327690084_MAINTENANCE_SYSTEMS_AND_COSTS_FOR_WOODEN_FACADES


Go to article

Authors and Affiliations

Waclaw Celadyn
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Architecture, ul. Podchorążych 1, 30-084 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The construction and operation of buildings is characterized by resource intensity in the form of massive consumption of raw materials and products, large financial and human labor expenditures, energy consumption, water consumption, long term, and significant environmental impacts, especially during their use. The currently implemented concept of sustainable development and circular economy influences the directions of development of construction industry and increases interest in self-sufficient buildings, especially in terms of energy, use of closed water circuits, use of waste materials. The aim of the article is to analyse the key determinants for the development of autonomous buildings. The general idea is that an autonomous building is designed to function without the support and services provided by public facilities, such as power, water, gas and sewage networks, waste management, and even the provision of food. On the basis of literature analysis and expert interviews, the factors characterizing this type of construction were determined. Their analysis by means of the DEMATEL method allowed to assess and indicate the most significant cause-and effect relationships conditioning the development of autonomous buildings.
Go to article

Authors and Affiliations

Aleksandra Mach
1
ORCID: ORCID
Joanna Sagan
1
ORCID: ORCID
Anna Sobotka
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Investors are obliged to carry out construction processes based on the binding rules and regulations. However, these regulations are constantly evolving and subject to various attempts of improvement. Therefore, the aim of this article is an attempt to present the changes that have recently occured in the Polish process of construction process of a single-family residential building, in the context of proceedings before architectural and construction administration authorities. Basic legal acts regulating this procedure have been amended, such as: the Construction Law Act and the Regulation of the Minister of Development on the detailed scope and form of a construction design. Since these regulations have changed their provisions many times over the years, the article focuses on the changes that entered into force during 2020 and 2021. An additional aim of the article is to check and show how these changes were adopted by both investors and participants in the construction process, such as designers. In order to achieve this goal, a survey was conducted among them in Mał opolska region. The data concerning the submitted applications for permits for the construction of a single-family residential building, within the mentioned years, have been analyzed.
Go to article

Authors and Affiliations

Marcin Kowalik
1
ORCID: ORCID
Wojciech Drozd
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Division of Management in Civil Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hamburg with the quantity of about 18 mlns m2 is, alongside with Berlin and Munich, the biggest office centre in Germany. The large-scale planning and urban operations with the aim of location this function in the centre have been carried out since the beginning of the '60s. The policy of deployment the ofiice sites has beez modified since then, from isolating the monofunctional area of the Modernism's spirit, to multifunctional structures interplaying with the other sites when it comes to activities' potentiality with the expansion of the large-scale urban structures. Many recent realisations abound with significant buildings that bring the avant-garde approach to the idea of an office building. The high level of building technology and the importance of ecological aspects are the important distinction. The mentioned realizations has been noticed by the architectural critics and mentioned in professional press. The pride of place belongs to the works of BRT (Bothe-Richter-Teherani), that has created many innovatory office buildings.

Go to article

Authors and Affiliations

Maciej Złowodzki
Katarzyna Zawada-Pęgiel
Download PDF Download RIS Download Bibtex

Abstract

Since the ’70 Vienna has taken up the political, economic and planning actions heading to make the city the significant European business centre. The mentioned above has been realised by development of the modern workplaces connected with generating, transforming, distributing and commercialising information, it is to say by developing the office and conferencing functions. The first was built the Uno-City, then it was recreated into the multifunctional business plot with the office function as the main, namely the Donau-City. With the business area of more than 11mln squaremetres, Vienna is the biggest centre of this type in the eastern part of the European Union, and within the limits of Donau-City there have been risen many interesting architectural objects. The six of them are presented in the article.

Go to article

Authors and Affiliations

Maciej Złowodzki
Katarzyna Zawada-Pęgiel
Download PDF Download RIS Download Bibtex

Abstract

The present article relates to the subject of the relocation of buildings. It presents a historical background of operations of this type carried out in the past around the world, as well as in Poland. It goes on to discuss in more detail some pioneering structural and technological solutions used during the relocation of the Rogatka Grochowska (Grochowska tollgate) building, carried out in 1961 in Warsaw. The article’s main theme is the process of relocation of a historic building No. 15 within the old Norblin Factory in Warsaw, which took place during the final months of 2018. The article briefly presents the factory’s history. It also describes the assumptions of the related project, which covers the development of the old Norblin Factory. It discusses in detail the concept and the scope of the relocation of building No. 15, with the description of the structural and technical design related to this process. The progress of the relocation which took place in 2018 has been reported in detail.
Go to article

Authors and Affiliations

Paweł Grzegorz Kossakowski
1
ORCID: ORCID

  1. Kielce University of Technology, Faculty of Civil Engineering and Architecture, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The research paper reviews issues associated with the impact of groundwater flow on soil characteristics and parameters, hence, the entire structure of a building set on it.Water seepage through the ground, building subsoil or structural elements of buildings made of soil affects the soil skeleton and may lead to changes in the arrangement of individual grains relative to each other, i.e., a modified soil structure. Soil solid phase (soil skeleton) deformations resulting from seepage forces are called seepage-induced deformations. The article characterizes typical seepage-induced deformations and specifies a criterion defining the beginning of the phenomenon. The case study involved using data on cracks and deformations in a historic building, as well as water seepage in its subsoil. Seepage was analysed, and zones where the seepage process initiation criterion was exceeded, were determined based on subsoil water level monitoring data. The determined zones coincide with the location of building cracks and scratches and confirm the possible cause behind building damage.
Go to article

Authors and Affiliations

Paweł Popielski
1
ORCID: ORCID
Bartosz Bednarz
1
ORCID: ORCID
Tomasz Majewski
2 3
ORCID: ORCID
Maciej Niedostatkiewicz
4
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Department of Hydro Engineering and Hydraulics, ul. Nowowiejska 20, 00-653 Warsaw, Poland
  2. Gdansk University of Technology, Doctoral School of Implementation, ul. Gabriela Narutowicza11/12, 80-233 Gdansk, Poland
  3. Pracownia Projektowo-Inzynierska [Design and Engineering Studio] Tomasz Majewski, Os. Sierakowskich 9B lok. 3. 82-400 Sztum, Poland
  4. Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Concrete Structures, Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the technical condition of buildings. An attempt was made to compare the technical condition and the degree of technical wear of two multi-family residential buildings erected at the interval of 25 years. The list of such objects is intended to illustrate that even relatively young buildings may exhibit differing levels of wear and technical condition of building elements.

Go to article

Authors and Affiliations

Wojciech Drozd
ORCID: ORCID
Marcin Kowalik
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The break-up of the former Yugoslavia resulted in the establishment of seven states with manifestly different citizenship regimes. Relating the politics of citizenship to the dominant nation-building pro-jects, this paper argues that in the post-Yugoslav countries in which nation-building projects are con-solidated (Croatia, Slovenia and Serbia) citizenship regimes converge around ethnic inclusiveness, while in those where nation building is contested (Macedonia and Montenegro) territorial rather than ethnic attachments are articulated in citizenship policies. In the case of Kosovo, and to a certain degree Bosnia and Herzegovina, policies emphasise territory due to international involvement in the shaping of their citizenship regimes. Even though all of these states have adopted ius sanguinis as the main mechanism of citizenship attribution at birth, the different approaches to naturalisation and dual citi-zenship indicate that the politics of citizenship are inextricably linked to the questions of nation building and statehood. To explore these issues, the paper first outlines the main traits of citizenship policies in contested and consolidated states. It proceeds by looking at different naturalisation requirements in the two groups of states. It argues that extension to ethnic kin occurs only in countries in which statehood and nation building are consolidated, where it serves to project an image of national unity. In states that are challenged by several competing nation-building projects, citizenship attribution through ethnic kinship is impossible due to lack of internal unity. The paper also analyses approaches to dual citizen-ship, identifying patterns of openness and restrictiveness. By doing so, it links the politics of citizenship to the interaction of foreign policy mechanisms in post-Yugoslav countries and identifies the points where these regimes overlap or conflict with each other.

Go to article

Authors and Affiliations

Jelena Džankić
Download PDF Download RIS Download Bibtex

Abstract

The process of historical building conservation includes the repair of mortars eroded due to material and environmental factors. Identification of old mortar constituents is necessary to enable duplicating the material. Information on the binder and aggregate types and contents can be obtained from microscopic observation used in combination with instrumental methods. This paper presents the results of microstructure and mineral composition tests of mortars collected from the walls of thirteenth century buildings. A combination of techniques was used, which included X-ray diffraction, transmitted light optical microscopy and scanning electron microscopy with micro-area elemental composition analysis. The test results revealed porous lime and sand mortars with a binder-aggregate ratio often beyond the commonly adopted values. The mortars contained sand grains of up to 0.5 mm and larger pieces of limestone, flint, feldspar and brick. Transmitted light optical microscopy and scanning microscopy were found to be essential techniques for mortar characterization in existing buildings and structures.

Go to article

Bibliography

  1.  C.J. Groot, P. Bartos, and J.J. Hughes, “Historic mortars: Characteristic and tests – concluding summary and state-of-the-art”, in Proc. Intern RILEM workshop, Advanced Concrete and Masonry Centre, University of Paisley, Scotland, 1999.
  2.  J. Elsen, “Microscopy of historic mortars – a review”, Cem. Conc. Res. 36, 1416‒1424 (2006).
  3.  L. Czarnecki and D. Van Gemert, “Scientific basis and rules of thumb in civil engineering: conflict or harmony?”, Bull. Pol. Ac.: Tech. 64(4), 665‒673 (2016).
  4.  K.M. Haneefa, S.D. Rani, R. Ramasamy, and M. Santhanam, “Microstructure and geochemistry of lime plaster mortar from a heritage structure”, Constr. Build. Mater. 225, 538–554, (2019).
  5.  G. Borsoi, A. Santos Silva, P. Menezes, A. Candeias, and J. Mirao, “Analytical characterization of ancient mortars from the archaeological roman site of Pisoes (Beja, Portugal)”, Constr. Build. Mater. 204, 597–608 (2019).
  6.  B. Middendorf, G. Baronio, K. Callebaut, and J. Hughes, “Chemical – mineralogical and physical – mechanical investigation of old mortars”, in Proc. Intern. RILEM workshop, Advanced Concrete and Masonry Centre, University of Paisley, Scotland, 1999, pp. 53‒60.
  7.  J.J. Hughes, S. Cuthbert, and P. Bartos, “Alteration textures in historic Scottish lime mortars and the implications for practical mortar analysis”, Proc. of the 7th Euro seminar on Microscopy Applied to Building Materials, Delft, 1999, pp. 417‒426.
  8.  E. Sandström-Malinowski, “Historic mortars revived”, Proc. of the Intern. RILEM-workshop Repair mortars for historic masonry, Delft, 2005.
  9.  L.B. Sickels, “Organics vs. synthetics: their use as additives in mortars”, Proc. of the ICCROM Symposium Mortars, Cements and Grouts used in the Conservation of Historic Buildings, Rome, 1981, pp. 25‒53.
  10.  J. Elsen, A. Brutsaert, M. Deckers, and R. Brulet, “Microscopically study of ancient mortars from Tournai (Belgium)”, Mater. Charact. 53, 289‒295 (2004).
Go to article

Authors and Affiliations

Zdzisława Owsiak
1

  1. Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

By analyzing the individual stages of the building's life cycle, it can be easily concluded that the building's exploitation process is the longest and at the same time it is the justification for the construction project related to the construction of this building. In the course of the building's exploitation, various phenomena occur that affect its condition and thus the possibility of unlimited use. These are natural phenomena, as well as phenomena derived from external influences, which often lead to deterioration of the building's condition, or even its degradation. In response to these phenomena, maintenance, renovation and modernization activities are undertaken. Technical management is related to the identification of these phenomena, programming of adequate measures and their implementation. The conducted analysis of the results of the survey in the group of property managers allows to state categorically that the process of technical management is relatively little supported by IT tools and is still based on individual analysis and often intuitive actions. The article presents the possibilities of applying an innovative approach in the acquisition and collection of information about the technical condition of buildings, indicating the legitimacy of standardizing information forms and using them in building a database of cases of the CBR (case based reasoning) inference system.
Go to article

Authors and Affiliations

Marcin Gajzler
1
ORCID: ORCID

  1. DSc., PhD., Eng., Poznan University of Technology, Faculty of Civil and Transport Engineering, Ul. Piotrowo 3, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The East of Europe stays at present on the background of interests in the new architecture. Meanwhile Moscow is a major city of Europe and there many interesting implementations are occurring. For her the office market intensively is being extended, at least in contrast with countries of the free market democracy, it is playing the political factor there major part. From interesting implementations they mentioned the Moscow International Business Centre as about the big urban planning operation and about Dominion Building Office as about interesting Zaha Hadid work.
Go to article

Authors and Affiliations

Maciej Złowodzki
1

  1. Cracow University of Technology, Faculty of Architecture, Institute of Architectural Design
Download PDF Download RIS Download Bibtex

Abstract

The article presents method of assessment of one of the three basic aspects of sustainable construction concerning social utility properties of residential buildings. The study was based on the recommendations of standards [1] and [2], on the basis of which the area of features characterizing the social aspect of buildings was determined. Additionally, the presented method includes criteria which are necessary for the assessment of this aspect, and which are not included in the normative guidelines. The presented method fits in with the current trend of sustainable construction. This method enables and facilitates the comparison of social utility properties in different residential buildings. It is also allows for the classification of buildings according to the degree to which they meet their social utility properties; that can be a practical tool to support the decision on the future of the building (i.e., the sequence of necessary refurbishments) or the decision to buy or sell the property by indicating its strengths and weaknesses. By developing a way to assess a comprehensive set of criteria, the proposed method allows you to quickly and easily assess the social quality of residential buildings. In addition, the proposed measures for individual criteria can easily be adapted to requirements in other countries. The proposed “star” classification can also be used as a universal scale for assessing the social quality index of buildings.
Go to article

Bibliography


[1] EN 15643-3, Sustainability of construction works – Assessment of buildings – Part 3: Framework for the assessment of social performance, 2012.
[2] EN 16309, Sustainability of construction works – Assessment of social performance of buildings – Calculation methodology, 2014.
[3] A. U.S. Environmental Protection, https://www.epa.gov/, 26.01.2018. [Online].
[4] C. o. t. E. Communities, “Action Plan for sustainable construction,” A Lead market Initiative for Europe, Bruksela, 2007.
[5] H. Daly, “Beyond Growth: The Economics of Sustainable Development,” 1996.
[6] s. EN 15643-1, Sustainability of construction works - Sustainability assessment of buildings – Part 1: General framework, 2011.
[7] H. Zabihi, F. Habib and L. Mirsaeedie, “Sustainability in Building and Construction: Revising Definitions and Concepts,” International Journal of Emerging Sciences, 2(4), pp. 570–578, December 2012.
[8] M. Bryx, Fundamentals of Real Estate Management, Warsaw: poltext, 2009.
[9] J. Arendalski, Durability and reliability of residential buildings, Warsaw: Arkady, 1978.
[10] P. Knyziak, “Analysis of the Technical State for Large-Panel Residential Buildings Using Artificial Neural Networks,” Wydawnictwo Politechniki Warszawskiej, January 2007.
[11] M. R. M. K. J. Miks L., “Assessment of the technical condition of older urban buildings as a base for reconstruction proposals,” Slovak, pp. 30–34, 03 2004.
[12] A. M. A. S. Langevine R., “Decision support tool for the maintenance management of buildings,,” Joint International Conference on Computing and Decision Making in Civil and Building Engineering, Montreal–Canada, 14–16 June 2006.
[13] K. Firek and J. Dębowski, “Influence of the mining effects on the technical state of the panel housing,” Technical Transactions. Architecture, pp. 275–280, 2007.
[14] A. Wodyński, Technical wear of buildings in mining areas, Cracow: Uczelniane Wydaw. Nauk.-Dydakt. AGH im. S. Staszica, 2007.
[15] M. Wójtowicz, “Durability of buildings in the light of Regulation No. 305/2011,” Building Materials, pp. 28–29, December 2012.
[16] J. Konior, “Technical Assessment of Old Buildings by Fuzzy Approach,” Archives of Civil Engineering 65(1), pp. 130–141, March 2019. http://dx.doi.org/10.2478/ace-2019-0009
[17] D. Caccavelli and G. H., “TOBUS – an European diagnosis and decision making tool for Office building upgrading Energy and Building,” 2002. [Online]. https://doi.org/10.1016/S0378-7788(01)00100-1
[18] B. Nowogońska and J. Cibis, “Technical problems of residential construction,” IOP Conference Series: Materials Science and Engineering, 245 (5), pp. 52–42, October 2017. http://dx.doi.org/10.1088/1757-899X/245/5/052042
[19] A. Kaklauskas, E. Zavadskas and S. Raslanas, “Mulivariant design and multiple criteria analysis of building refurbishemnt,” Energy and Buildings, pp. 361–372, 2005. http://dx.doi.org/10.1016/j.enbuild.2004.07.005
[20] T. Kasprowicz, “Identification analysis of the exploitation of building objects,” in Polish construction a year after joining the European Union. Selected technological and organizational problems, Gdańsk, 2005.
[21] Z. Orłowski and A. Radziejowska, “Model for assessing the utility properties of a building,” in Conference: People, Buildings And Environment, Kromeriz, 2014.
[22] A. Ostańska, “Revitalization programs of settlements with prefabricated buildings in Europe, a contribution to the development of Polish programs”, Przegląd budowlany, 3, 2010.
[23] BREEAM, https://www.breeam.com/, Building Research Establishment, 31.01.2018. [Online].
[24] CASBEE, http://www.ibec.or.jp/CASBEE/english/ Japan Sustainable Building Consortium, 31 01 2018. [Online].
[25] DGNB, http://www.dgnb.de/en/, German Sustainable Building Council, 31.01.2018. [Online].
[26] G. B. C. LEED, https://new.usgbc.org/leed, 31.01.2018. [Online].
[27] N. Ardda, R. Mateus and L. Bragança, “Methodology to Identify and Prioritise the Social Aspects to Be Considered in the Design of More Sustainable Residential Buildings – Application to a Developing Country,” Buildings, 2018. http://dx.doi.org/10.3390/buildings8100130
[28] E. Radziszewska-Zielina, P. Czerski, Ł. Grześkowiak and K.-S. P. , “Comfort of use assessment in buildings with Interior wall insulation based on silicate and lime system in the context of the elimination of mould growth,” Archives of Civil Engineering, pp. 89–104, 2020. https://doi.org/10.24425/ace.2020.131798
[29] p. 6. Dz. U. Nr 75, Regulation of the Minister of Infrastructure regarding technical conditions that should be met by buildings and their location, 2002.
[30] Z. Orłowski and A. Radziejowska, “Model for assessing „accessibility” - the basic category in the evaluation of social performance of buildings according to standards PN-EN 16309+A1:2014-12,” Technical Transactions, 2017. https://doi.org/10.4467/2353737XCT.17.134.6885
Go to article

Authors and Affiliations

Aleksandra Radziejowska
1
ORCID: ORCID

  1. AGH University of Science and Technology in Cracow, Department of Geomechanics, Civil Engineering and Geotechnics, Av. Mickiewicza 30, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The design of new investments with underground floors in the downtown urban fabric calls for determining its impact on existing, often historic, neighboring facilities. The article presents the results of own research on 3D spatial arrangement numerical modeling of this type of investment. The scope of the research includes the analysis of neighboring buildings (including historic buildings), construction of the 3D numerical model, and calibration of the subsoil model taking into account the actual results of geodetic measurements. Own research as well as the completed housing development complex in Poland, downtown Warsaw, including data from project design and implementation documentation serve as the basis for research and analysis. As a result of said research and analysis, it was found that 3D computational models allow mapping of actual impacts within the designed new buildings and neighboring buildings, and as consequence - after appropriate calibration - a good reflection of soil displacements in the area of the planned investment. The knowledge of the anticipated values of soil displacements related to erecting new buildings is necessary at the design and implementation stages to ensure safety in all phases of works of existing buildings.
Go to article

Authors and Affiliations

Hanna Michalak
1
ORCID: ORCID
Paweł Przybysz
1

  1. Warsaw University of Technology, Faculty of Architecture, 55 Koszykowa St, 00-659 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

About 55% of over 14 million Polish households live in multi-family buildings. Cooperative or housing association buildings have a large share in this group. The heat is supplied from the district heating network or from local sources. With respect to facilities fed from gas boiler rooms, the signing and execution of fuel supply contracts is required. From October 1, 2017, the obligation to submit tariffs for gas trading set for all final customers (except for individual gas consumers in households) for approval to the President of the Energy Regulatory Office was lifted. Decisions regarding the choice of the supplier and the content of the concluded contract are made by the authorized bodies of the cooperative or housing association. The consequences of such decisions are borne by the owners and users of residential premises. Ensuring the continuity of a contract for the supply of gaseous fuel essentially comes down to establishing prices and rates in force for a given period. The right decision on the moment of signing the contract or the amendment, termination of the existing contract and signing a new one, or negotiation efficiency will result in financial profits for all users. The costs of heating and domestic hot water preparation are a significant component of the overall cost of the maintenance of flats in Poland. Therefore, it is even more important that the prices and rates agreed upon with the gas supplier are as favorable as possible to users. The high costs of heat are not only expenses for apartment owners. The attractiveness of flat on the rental market is also decreasing. The business activity carried out in facilities located in such buildings is also less competitive.

The authors of the article analyzed gas prices on the Polish market over the last 3 years and presented the results of simulations of the effects of specific prices and rates set in the contract for the supply of fuel at the cost of heating from the point of view of a single apartment. As these are not large amounts per year, they do not motivate to optimize the terms of the gas purchase contract in this respect. The dynamics of changes in gas prices in Poland, although slightly different from world trends, is high. This makes it difficult for those responsible to make the decisions, and for residential users, it often means spending differences in subsequent years. One of the consequences of setting prices and rates significantly higher than obtainable may also be the reluctance of local communities to take measures to increase the energy efficiency of the heat supply system. From the point of view of heating costs, such decisions may distort the economic effect of thermo-modernization.

Go to article

Authors and Affiliations

Grzegorz Bartnicki
Bogdan Nowak
Download PDF Download RIS Download Bibtex

Abstract

The research considers the aspect of the formation of interior lightning in conditions of extensive expenses on heating. In this regard there is important to study features not only of places and model of lightning, but also generation of heat in order to minimize expenses and find alternative technical solutions for building functioning. The relevance is determined by the fact that the problem of low efficiency of thermal energy used to ensure an appropriate microclimate in buildings is typical for many regions. The purpose of this article is to study features not only of places and model of lighting but also generation of heat to minimize expenses and find alternative technical solutions for building functioning. In the work, the methods of calculation methods and mathematical models such as the exergy model of humans were used. The authors have determined that daylight is only one of the complex solutions of the matter of building energy efficiency. Providing the conditions of heating comfort indoors is not less important in the conditions of increasing requirements to energy conservation. The authors consider the compromise between these two requirements without harming human health the main challenge to the energy conservation specialists. The authors have developed the model, which evaluates not only the achievements of technical parameters, but also orientation toward the model of energy consumption of human. The practical application of the developed methodology allows for forecasting not only building heating based on projected technical indicators but also tailored to individual needs.
Go to article

Authors and Affiliations

Xiangyong Wu
1
Zhi Yi Yang
1

  1. Cheung Kong School of Art & Design, Shantou University, China
Download PDF Download RIS Download Bibtex

Abstract

The article presents basic changes introduced in the first edition of the governmental Urban Planning and Building Code. The changes regard spatial development, especially planning and permit documents, and competences of the governmental bodies in accepting, legislating and issuing such documents. In this respect, the article points out important regulations for the mining industry, in particular for deposit protection and the initiation of mining projects. In certain cases, critical opinions of some of the governmental institutions are mentioned. In a new document regarding the “Spatial Development Study of a Community”, the draft of the Code orders a division of the community into functional zones. Therefore a mining and extractive industry could be delimited as a functional zone. The Code also specifies that while delimiting a new urbanization area, the documented mining deposits areas should be avoided. In relation to the local spatial plan, the Code establishes the following: in documented strategic mining deposit zones the initiation of non-public purpose investments can only be carried out according to the urban spatial plan. This project also orders that only the local spatial plan can allow for the localization of “establishments that carry a risk of serious industrial breakdown” and “investments that can seriously impact the environment”. The Code also introduces another innovation: the possibility of issuing the local spatial plan with an integrated evaluation on the environmental impact. The “investment permits” are intended to replace both the previous building permits and previous decisions on the conditions of development of the areas not covered in the local spatial plans. The investment permits referring to mining establishments will be issued by the mining administration authorities. The main adverse change for mining is that the exploration of mining deposits owned by the State Treasury loses its previous status of public purposes. The article also indicates that some of the described regulations might be changed during the further legislation process.

Go to article

Authors and Affiliations

Marek Wiland
Download PDF Download RIS Download Bibtex

Abstract

In this paper we present the analysis of the gas usage for different types of buildings. First, we introduce the classical theory of building heating. This allows the establishment of theoretical relations between gas consumption time series and the outside air temperature for different types of buildings, residential and industrial. These relations imply dierent auto-correlations of gas usage time series as well as different cross-correlations between gas consumption and temperature time series for different types of buildings. Therefore, the autocorrelation and the cross-correlation were used to classify the buildings into three classes: housing, housing with high thermal capacity, and industry. The Hurst exponent was calculated using the global DFA to investigate auto-correlation, while the Kendall's τ rank coeficient was calculated to investigate cross-correlation.

Go to article

Authors and Affiliations

Krzysztof Domino
Przemysław Głomb
Zbigniew Łaskarzewski
Download PDF Download RIS Download Bibtex

Abstract

We view philosophy as paradigm setting: largely, spread over leading sciences of the epoch, as well as the main developing technologies, and even socio-economic and managerial patterns. This is, obviously, a “regulatory definition,” not quite a descriptive one. We examine whether it is the science of sciences, or the science over the sciences. Thus, it is not quite a meta-science. Our point is not to view philosophy as a methodology of science, or as its maid ( ancilla). Philosophy is viewed as the pinnacle of the sciences, providing them with ontological and axiological meanings. Here is one proposed definition: Philosophy is built upon the sum of general theories of all leading sciences (broadly understood); it is a theory based on this sum. The aim of philosophy so defined is to stipulate and approximate veridical worldviews, rooted in the strongest available background, which is largely the background provided by the sciences, but not quite limited to what is scientifically provable at a given point in time—this last clause is due to temporary limitedness of any science, always existing at a given time-slice. Thus, limited dependency on any principles, not only factual statements. As we know from Albert Einstein’s relativity theories and other scientific revolutions, both factual statements and higher-level principles, are always already inductively questionable, e.g., through inference to the best explanation following pragmatic, context dependent, criteria of what counts as “the best” of explanations. We also question the intuitive requirements of physicalism that are crucial to Daniel Stoljar’s thesis that physicalism cannot be properly defined. In contrast to the broadly scientistic predilection beneath the approach in the main bulk of this article we also need and require a philosophical focus on the human existential condition, which is complementary to, and not contradictory with, the above definition of philosophy. The proposed approach may be viewed as an Enlightenment approach, aware of its strengths and limits; thus, with a post- Enlightenment zing.
Go to article

Authors and Affiliations

Piotr Bołtuć
1 2

  1. University of Illinois at Springfield, USA
  2. Warsaw School of Economics
Download PDF Download RIS Download Bibtex

Abstract

The article provides an overview of Brain Computer Interface (BCI) solutions for intelligent buildings. A significant topic from the smart cities point of view. That solution could be implemented as one of the human-building interfaces. The authors presented an analysis of the use of BCI in specific building systems. The article presents an analysis of BCI solutions in the context of controlling devices/systems included in the Building Management System (BMS). The Article confirms the possibility of using this method of communication between the user and the building’s central unit. Despite many confirmations of repeatable device inspections, the article presents the challenges faced by the commercialization of the solution in buildings.
Go to article

Bibliography

[1] Gan V.J.L., Lo I.M.C., Ma J., Tse K.T., Cheng J.C.P., Chan C.M., Simulation optimisation towards energy efficient green buildings: Current status and future trends, Journal of Cleaner Production, Elsevier Ltd, vol. 254, p. 120012 (2020), DOI: 10.1016/j.jclepro.2020.120012.
[2] Ericsson, 10 hot consumer trends 2030 (2019), https://www.ericsson.com/en/reports-and-papers/consumerlab/reports/10-hot-consumer-trends-2030, accessed December 29, 2020.
[3] Ramadan R.A., Vasilakos A.V., Brain computer interface: control signals review, Neurocomputing, vol. 223, pp. 26–44 (2017), DOI: 10.1016/j.neucom.2016.10.024.
[4] Donoghue J.P., Connecting cortex to machines: Recent advances in brain interfaces, Nature Neuroscience, Nature Publishing Group, vol. 5, no. 11s, pp. 1085–1088 (2002), DOI: 10.1038/nn947.
[5] Schwartz A.B., Cortical neural prosthetics, Annual Review of Neuroscience, vol. 27, Annual Reviews, pp. 487–507 (2004), DOI: 10.1146/annurev.neuro.27.070203.144233.
[6] Nicolas-Alonso L.F., Gomez-Gil J., Brain computer interfaces, a review, Sensors, vol. 12, no. 2, pp. 1211–1279 (2012), DOI: 10.3390/s120201211.
[7] Jafar M.R., Nagesh D.T., A beginner’s guide to Brain Machine Interface – Review, SSRN, pp. 6–10 (2020), DOI: 10.2139/ssrn.3645960.
[8] Shi K., GaoN., Li Q., Bai O., A P300 brain-computer interface design for virtual remote control system, 2017 3rd IEEE International Conference on Control Science and Systems Engineering, ICCSSE 2017, pp. 326–329 (2017), DOI: 10.1109/CCSSE.2017.8087950.
[9] Birbaumer N., Brain-computer-interface research: Coming of age, Clinical Neurophysiology, vol. 117, no. 3, pp. 479–483 (2006), DOI: 10.1016/j.clinph.2005.11.002.
[10] Marx S. et al., Validation of mobile eye-tracking as novel and efficient means for differentiating progressive supranuclear palsy from Parkinson’s disease, Frontiers in Behavioral Neuroscience, vol. 6, no. DEC (2012), DOI: 10.3389/fnbeh.2012.00088.
[11] Birbaumer N., Cohen L.G., Brain-computer interfaces: Communication and restoration of movement in paralysis, in Journal of Physiolog., vol. 579, no. 3, pp. 621–636 (2007), DOI: 10.1113/jphysiol.2006.125633.
[12] Bhemjibhaih D.P., Sanjay G.D., Sreejith V., Prakash B., Brain-computer interface based home automation system for paralysed people, 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS 2018), pp. 230–233 (2019), DOI: 10.1109/RAICS.2018.8635060.
[13] Gao X., Xu D., Cheng M., Gao S., A BCI-based environmental controller for the motion-disabled, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 137–140 (2003), DOI: 10.1109/TNSRE.2003.814449.
[14] Daly J.J., Huggins J.E., Brain-computer interface: Current and emerging rehabilitation applications, Archives of Physical Medicine and Rehabilitation, W.B. Saunders, vol. 96, no. 3., pp. S1–S7 (2015), DOI: 10.1016/j.apmr.2015.01.007.
[15] Bonneau L., Ramahandry V., Probst T., Pedersen L., Dakkak-Arnoux B., Smart Building: Energy Efficiency Application (2017).
[16] Minh K.N., Van D.L., Duc T.D., An T.N., An advanced IoT system for monitoring and analysing chosen power quality parameters in micro-grid solution, Archives of Electrical Engineering, vol. 70, no. 1, pp. 173–188 (2021), DOI: 10.24425/aee.2021.136060.
[17] Hannan M.A. et al., A review of internet of energy based building energy management systems: Issues and recommendations, IEEE Access, vol. 6, pp. 38997–39014 (2018), DOI: 10.1109/ACCESS.2018.2852811.
[18] Minoli D., Sohraby K., Occhiogrosso B., IoT Considerations, Requirements, and Architectures for Smart Buildings-Energy Optimization and Next-Generation Building Management Systems, IEEE Internet of Things Journal, vol. 4, no. 1, pp. 269–283 (2017), DOI: 10.1109/JIOT.2017.2647881.
[19] Kastner W., Neugschwandtner G., Soucek S., Newman H.M., Communication systems for building automation and control, Proceedings of the IEEE, vol. 93, no. 6, pp. 1178–1203 (2005), DOI: 10.1109/JPROC.2005.849726.
[20] Wang M., Qiu S., Dong H., Wang Y., Design an IoT-based building management cloud platform for green buildings, Proceedings – 2017 Chinese Automation Congress, CAC 2017, vol. 2017, January, pp. 5663–5667 (2017), DOI: 10.1109/CAC.2017.8243793.
[21] Lilis G., Conus G., Kayal M., A distributed, event-driven building management platform on web technologies, Proceedings of 1st International Conference on Event-Based Control, Communication and Signal Processing, EBCCSP 2015 (2015), DOI: 10.1109/EBCCSP.2015.7300702.
[22] Ahmad M.W., Mourshed M., Yuce B., Rezgui Y., Computational intelligence techniques for HVAC systems: A review, Building Simulation, vol. 9, no. 4, pp. 359–398 (2016), DOI: 10.1007/s12273-016-0285-4.
[23] Chen Z., Xu P., Feng F., Qiao Y., LuoW., Data mining algorithm and framework for identifying HVAC control strategies in large commercial buildings, Building Simulation, vol. 14, no. 1, pp. 63-74 (2021), DOI: 10.1007/s12273-019-0599-0.
[24] Sun F., Yu J., Indoor intelligent lighting control method based on distributed multi-agent framework, Optik, vol. 213, no. March, p. 164816 (2020), DOI: 10.1016/j.ijleo.2020.164816.
[25] Khanchuea K., Siripokarpirom R., A Multi-Protocol IoT Gateway and WiFi/BLE Sensor Nodes for Smart Home and Building Automation: Design and Implementation, 2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), pp. 1–6 (2019), DOI: 10.1109/ICTEmSys.2019.8695968.
[26] Anwar F., Boby R.I., Rashid M.M., Alam M.M., Shaikh Z., Network-Based Real-time Integrated Fire Detection and Alarm (FDA) System with Building Automation, IOP Conference Series: Materials Science and Engineering, vol. 260, no. 1 (2017), DOI: 10.1088/1757-899X/260/1/012025.
[27] Luo R.C., Lin S.Y., Su K.L., A multiagent multisensor based security system for intelligent building, IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, vol. 2003-January, pp. 311–316 (2003), DOI: 10.1109/MFI-2003.2003.1232676.
[28] Hui H., Ding Y., Shi Q., Li F., Song Y., Yan J., 5G network-based Internet of Things for demand response in smart grid: A survey on application potential, Applied Energy, vol. 257, p. 113972 (2020), DOI: 10.1016/j.apenergy.2019.113972.
[29] Chauhan R.K., Chauhan K., Building automation system for grid-connected home to optimize energy consumption and electricity bill, Journal of Building Engineering, vol. 21, no. May 2018, pp. 409-420 (2019), DOI: 10.1016/j.jobe.2018.10.032.
[30] Afroz Z., Shafiullah G.M., Urmee T., Higgins G., Modeling techniques used in building HVAC control systems: A review, Renewable and Sustainable Energy Reviews, vol. 83, pp. 64–84, Elsevier Ltd (2018), DOI: 10.1016/j.rser.2017.10.044.
[31] Amana H.A.C., ASXC16 Air Conditioner Best Suited For Homes|Amana (2021), https://www.amanahac.com/products/air-conditioners/16-seer-asxc16, accessed March 23, 2021.
[32] Goodman, Air Conditioner/GSXC18/Up To 18 SEER/Goodman, 2021, https://www.goodmanmfg.com/products/air-conditioners/18-seer-dsxc18, accessed March 23, 2021.
[33] Bryant, Two stage air conditioners – air conditioners/Bryant (2021), https://www.bryant.com/en/us/products/air-conditioners/189bnv, accessed March 23, 2021.
[34] Trane, Air Conditioner/$400 Rebate on Quietest AC/Trane®Cooling (2021), https://www.trane.com/residential/en/products/air-conditioners/xv18-air-conditioners, accessed March 23, 2021.
[35] Cheng Y., Fang C., Yuan J., Zhu L., Design and application of a smart lighting system based on distributed wireless sensor networks, Applied Sciences, Switzerland, vol. 10, no. 23, pp. 1–21 (2020), DOI: 10.3390/app10238545.
[36] Kaminska A., Ozadowicz A., Lighting control including daylight and energy efficiency improvements analysis, Energies, vol. 11, no. 8 (2018), DOI: 10.3390/en11082166.
[37] Toub M., Reddy C.R., Robinett R.D., Shahbakhti M., Integration and Optimal Control of MicroCSP with Building HVAC Systems: Review and Future Directions, Energies, vol. 14, no. 3, p. 730 (2021), DOI: 10.3390/en14030730.
[38] Kang J., Han J., Park J.H., Design of IP camera access control protocol by utilizing hierarchical group key, Symmetry, vol. 7, no. 3, pp. 1567–1586 (2015), DOI: 10.3390/sym7031567.
[39] Froiz-Míguez I., Fernández-Caramés T.M., Fraga-Lamas P., Castedo L., Design, implementation and practical evaluation of an iot home automation system for fog computing applications based on MQTT and ZigBee-WiFi sensor nodes, Sensors, Switzerland, vol. 18, no. 8, pp. 1–42 (2018), DOI: 10.3390/s18082660. [40] KNX Association KNX Association [official website] (2020), https://www.knx.org/knx-en/forprofessionals/index.php, accessed January 06, 2021.
[41] Tran T.N., Grid Search of Convolutional Neural Network model in the case of load forecasting, Archives of Electrical Engineering, vol. 70, no. 1, pp. 25–36 (2021), DOI: 10.24425/aee.2021.136050.
[42] Prashant P., Joshi A., GandhiV., Brain computer interface: A review, (2016), DOI: 10.1109/NUICONE.2015.7449615.
[43] Lee S., Shin Y., Woo S., Kim K., Lee H.-N., Review of Wireless Brain-Computer Interface Systems, Brain-Computer Interface Systems – Recent Progress and Future Prospects (2013), DOI: 10.5772/56436.
[44] Hall J.E., Guyton and Hall Textbook of Medical Physiology, Saunders, vol. 13 (2015).
[45] Wolpaw J.R., Birbaumer N., McFarland D.J., Pfurtscheller G., Vaughan T.M., Brain-computer interfaces for communication and control, Clinical Neurophysiology, Elsevier, vol. 113, no. 6, pp. 767–791 (2002), DOI: 10.1016/S1388-2457(02)00057-3.
[46] Laureys S., Boly M., Tononi G., Functional neuroimaging in The Neurology of Consciousness, pp. 31–42 (2009), DOI: 10.1016/B978-0-12-374168-4.00003-4.
[47] Sanei S., Chambers J.A., EEG Signal Processing (2007).
[48] Baillet S., Mosher J.C., Leahy R.M., Electromagnetic brain mapping, IEEE Signal Processing Magazine, vol. 18, no. 6, pp. 14–30 (2001), DOI: 10.1109/79.962275.
[49] Kübler A., Kotchoubey B., Kaiser J., Birbaumer N., Wolpaw J.R., Brain-computer communication: Unlocking the locked, Psychological Bulletin, vol. 127, no. 3, pp. 358–375 (2001), DOI: 10.1037/0033- 2909.127.3.358.
[50] Anand B.K., Chhina G.S., Singh B., Some aspects of electroencephalographic studies in Yogis, Electroencephalography and Clinical Neurophysiology, vol. 13, no. 3, pp. 452–456 (1961), DOI: 10.1016/0013-4694(61)90015-3.
[51] Aftanas L.I., Golocheikine S.A., Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of meditation, Neuroscience Letters, vol. 310, no. 1, pp. 57–60 (2001), DOI: 10.1016/S0304-3940(01)02094-8.
[52] Kübler A., Neumann N., Wilhelm B., Hinterberger T., Birbaumer N., Predictability of braincomputer communication, Journal of Psychophysiology, vol. 18, no. 2–3, pp. 121–129 (2004), DOI: 10.1027/0269-8803.18.23.121.
[53] Ortiz V.H., Tapia J.J., Mathematical model for classification of EEG signals, Optics and Photonics for Information Processing IX, vol. 9598, no. September 2015, p. 95981C (2015), DOI: 10.1117/12.2187092.
[54] EMOTIV/Brain Data Measuring Hardware and Software Solutions (2020), https://www.emotiv.com, accessed January 06, 2021.
[55] EEG – ECG – Biosensors (2020), http://neurosky.com, accessed January 06, 2021.
[56] MuseTM – Meditation Made Easy with the Muse Headband (2020), https://choosemuse.com, accessed January 06, 2021.
[57] OpenBCI – Open Source Biosensing Tools (EEG, EMG, EKG, and more) (2020), https://openbci.com, accessed January 06, 2021.
[58] DSI Series Dry EEG Headsets – Wearable Sensing (2020), https://wearablesensing.com, accessed January 06, 2021.
[59] ANT Neuro inspiring technology for the human brain (2020), https://www.ant-neuro.com, accessed January 06, 2021.
[60] Reinventing brain health, Neuroelectrics (2020), https://www.neuroelectrics.com, accessed January 06, 2021.
[61] Fully mobile EEG devices mBrainTrain, Home new (2020), https://mbraintrain.com, accessed January 06, 2021.
[62] Advanced Brain Monitoring (2020), https://www.advancedbrainmonitoring.com, accessed January 06, 2021.
[63] Dry EEG Headset, CGX, United States (2020), https://www.cgxsystems.com/home-old, accessed January 06, 2021.
[64] Ghodake A.A., Shelke S.D., Brain controlled home automation system (2016), DOI: 10.1109/ISCO.2016.7727050.
[65] Lee W.T., Nisar H., Malik A.S., Yeap K.H., A brain computer interface for smart home control, Proceedings of the International Symposium on Consumer Electronics, ISCE (2013), pp. 35–36, DOI: 10.1109/ISCE.2013.6570240.
[66] Holzner C., Guger C., Edlinger G., Grönegress C., Slater M., Virtual smart home controlled by thoughts, Proceedings of the Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE 2009, pp. 236–239 (2009), DOI: 10.1109/WETICE.2009.41.
[67] Edlinger G., Holzner C., Guger C., Groenegress C., Slater M., Brain-computer interfaces for goal orientated control of a virtual smart home environment, 2009 4th International IEEE/EMBS Conference on Neural Engineering, NER’09, pp. 463–465 (2009), DOI: 10.1109/NER.2009.5109333.
[68] Alrajhi W., Alaloola D., Albarqawi A., Smart home: Toward daily use of BCI-based systems (2017), DOI: 10.1109/ICIHT.2017.7899002.
[69] Alshbatat A.I.N., Vial P.J., Premaratne P., Tran L.C., EEG-based Brain-computer Interface for Automating Home Appliances, Journal of Computers, vol. 9, no. 9 (2014), DOI: 10.4304/jcp.9.9.2159-2166.
[70] Virdi P., Syal P., Kumari P., Home automation control system implementation using SSVEP based brain computer interface, Proceedings of the International Conference on Inventive Computing and Informatics, ICICI 2017, pp. 1068–1073 (2018), DOI: 10.1109/ICICI.2017.8365304.
[71] Boucha D., Amiri A., Chogueur D., Controlling electronic devices remotely by voice and brain waves, Proceedings of the 2017 International Conference on Mathematics and Information Technology, ICMIT 2017, pp. 38–42 (2018), DOI: 10.1109/MATHIT.2017.8259693.
[72] Putze F., Weib D., Vortmann L.M., Schultz T., Augmented reality interface for smart home control using SSVEP-BCI and eye gaze, Conference Proceedings – IEEE International Conference on Systems, Man and Cybernetics, pp. 2812–2817 (2019), DOI: 10.1109/SMC.2019.8914390.
[73] Kosmyna N., Tarpin-Bernard F., Bonnefond N., Rivet B., Feasibility of BCI control in a realistic smart home environment, Frontiers in Human Neuroscience, vol. 10, p. 10 (2016), DOI: 10.3389/fnhum.2016.00416.
[74] Cortez S.A., Flores C., Andreu-Perez J., A Smart Home Control Prototype Using a P300-Based Brain– Computer Interface for Post-stroke Patients, Smart Innovation, Systems and Technologies, vol. 202, pp. 131–139 (2021), DOI: 10.1007/978-3-030-57566-3_13.
[75] Miah M.O., Khan S.S., Shatabda S., Al Mamun K.A., Farid D.M., Real-Time EEG Classification of Voluntary Hand Movement Directions using Brain Machine Interface, Proceedings of 2019 IEEE Region 10 Symposium, TENSYMP 2019, pp. 473–478 (2019), DOI: 10.1109/TENSYMP46218.2019.8971255.
[76] Käthner I. et al., A P300 BCI for e – inclusion, cognitive rehabilitation and smart home control, pp. 60–63 (2014), DOI: 10.3217/978-3-85125-378-8-15.
[77] Edlinger G., Holzner C., Guger C., A hybrid brain-computer interface for smart home control, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6762 LNCS, no. PART 2, pp. 417–426 (2011), DOI: 10.1007/978-3- 642-21605-3_46.
[78] Kim H.J., Lee M.H., Lee M., A BCI based Smart Home System Combined with Event-related Potentials and Speech Imagery Task (2020), DOI: 10.1109/BCI48061.2020.9061634.
[79] Park S., Cha H.S., Im C.H., Development of an Online Home Appliance Control System Using Augmented Reality and an SSVEP-Based Brain-Computer Interface, IEEE Access, vol. 7, pp. 163604– 163614 (2019), DOI: 10.1109/ACCESS.2019.2952613.
[80] Vaughan T.M. et al., The wadsworth BCI research and development program: At home with BCI, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 2, pp. 229–233 (2206), DOI: 10.1109/TNSRE.2006.875577.
[81] Qin L.Y. et al., Smart home control for disabled using brain computer interface, International Journal of Integrated Engineering, vol. 12, no. 4, pp. 74–82 (2020), DOI: 10.30880/ijie.2019.11.06.004.
[82] Dobosz K., Wittchen P., Brain-computer interface for mobile devices, Journal of Medical Informatics and Technologies, vol. 24, pp. 215–222 (2015).
[83] Kawa B., Borkowski P., Data analysis of the latency in the building with using telecommunication technology, Przegl˛ad Elektrotechniczny, vol. 1, no. 2, pp. 131–137 (2021), DOI: 10.15199/48.2021.02.28.

Go to article

Authors and Affiliations

Bartłomiej Kawa
1
ORCID: ORCID
Piotr Borkowski
1
ORCID: ORCID
Michał Rodak
1
ORCID: ORCID

  1. Lodz University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the process of structural diagnostics of the Dominican monastery in Lublin. In order to establish the underlying cause of cracks, not only in situ investigations but also detailed analyses of documents were executed. Inventory drawings were examined in order to identify the building’s structural system. The query of historical documents and city archives was carried out to understand the structure’s performance. Conclusions were confronted with the crack pattern. It was established that the damage resulted from the original conditions of the structural system in place. These conditions were created in past, when the monastery incorporated sections of the medieval town wall into its structure.
The article details structural remedies applied in the course of rehabilitation. The introduction of supporting structures was the effect of a compromise between the necessity of ensuring structural safety and the demand for the minimum impact on the heritage site. The article aims to highlight that the structural assessment of the heritage asset is an investigative process. The work also emphasizes that in spite of numerous up-to-date methods helpful in the structural diagnostics of building structure, the conceptual analyses of the structural system still remain of vital importance. The query of historical documents helps in determining the structural system of a historic building, and vice versa, structural analyses assist in recognizing and supplementing the knowledge of the asset’s history.
Go to article

Bibliography

[1] E. Radziszewska-Zielina, G. Sladowski, “Supporting the selection of a variant of the adaptation of a historical building with the use of fuzzy modelling and structural analysis”, Journal of Cultural Heritage, 2017, vol. 26, pp. 53–63.
[2] L. Czarnecki and D. Van Gemert, “Scientific basis and rules of thumb in civil engineering: conflict or harmony”, Bulletin of Polish Academy of Science: Technical sciences, 2016, vol. 64, pp. 665–673.
[3] G. Barbieri, M. Valente, L. Biolzi, C. Togliani, L. Fregonese, G. Stanga, “An insight in the late Baroque architecture: An integrated approach for a unique Bibiena church”, Journal of Cultural Heritage, 2017, vol. 23, pp. 58–67.
[4] M. P. Sammartino, G. Cau, R. Reale, S. Ronca, G. Visco, “A multidisciplinary diagnostic approach preliminary to the restoration of the country church “San Maurizio” located in Ittiri (SS)”, Heritage Science 2, 2014, vol. 4.
[5] E. Diz-Mellado, E.J. Mascort-Albea, R. Romero-Hernández, C. Galán-Martín, C. Rivera-Gòmez, J. Ruiz- Jaramillo, A. Jaramillo-Morilla, “Non-destructive testing and Finite Element Method integrated procedure for heritage diagnosis: The Seville Cathedral case study”, Journal of Building Engineering, 2021, vol. 37, p. 102134.
[6] M.F. Funari, S. Spadea, P. Lonetti, F. Fabbrocino, R. Luciano, “Visual programming for structural assessment of out-of-plane mechanism in historic masonry structures”, Journal of Building Engineering, 2020, vol. 31, p. 101425.
[7] M.A. Nùñez-Andrés, F. Buill, A. Costa-Jover, J.M. Puche, “Structural assessment of Roman wall and vaults in the cloister of Tarragona Cathedral”, Journal of Building Engineering, 2017, vol. 13, pp. 77–86.
[8] C. Akcay, A. Solt,N.M.Korkmaz, B. Sayin, “Aproposal for the reconstruction of historical masonry building constructed in Ottoman Era (Istambul)”, Journal of Building Engineering, 2020, vol. 32, pp. 101493.
[9] ICOMOS: “Recommendation for the analysis, conservation and structural restoration of architectural heritage”. 2003. Website of International Council of Monuments and sites. https://www.icomos.org/en/aboutthe-centre/179-articles-en-francais/ressources/charters-and-standards/165-icomos-charter-principles-forthe- analysis-conservation-and-structural-restoration-of-architectural-heritage. Accessed 10 Feb. 2021
[10] C. Alessandri, V. Mallardo, “Structural assessments of the Church of the Nativity in Bethlehem”, Journal of Cultural Heritage, 2012, vol. 13, Supplement, pp. e61–e69.
[11] A. Anzani, L. Binda, A. Carpinteri, S. Invernizzi, G. Lacidogna, “A multilevel approach for the damage assessment of Historic masonry towers”, Journal of Cultural Heritage, 2010, vol. 11, pp. 459–470.
[12] L. Binda, A. Saisi, C. Tiraboschi, “Investigation procedures for the diagnosis of historic masonries”, Construction and Building Materials, 2000, vol. 14, pp. 199–233.
[13] P. B. Lourenço, “Recommendations for restoration of ancient buildings and the survival of masonry chimney”, Construction and Building Materials, 2006, vol. 20, pp. 239–251.
[14] M-G. Masciotta, L. F. Ramos, P. B.Lourenço, “The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal”, Journal of Cultural Heritage, 2017, vol. 27, pp. 36–47.
[15] G. Teza, S. Trevisani, A. Pesci, “The role of geoenvironmental sciences in Cultural Heritage preservation: the case of 1000 year old leaning bell tower of Caorle (Venice)”. Journal of Cultural Heritage, 2019, vol. 39, pp. 270–277.
[16] C. Alessandri, M. Garutti, V. Mallardo, G. Milani, “Crack Patterns Induced by Foundation Settlements: Integrated Analysis on a Renaissance Masonry Palace in Italy”, International Journal of Architectural Heritage, 2015, vol. 9, pp. 111–129.
[17] M. Betti, M. Orlando, A. Vignoli, “Static behaviour of an Italian Medieval Castle: Damage assessment by numerical modelling”, Computer Structures, 2011, vol. 89, pp. 1956–1970.
[18] G. Croci, “General methodology for the structural restoration of historic buildings: the cases of the Tower of Pisa and the Basilica of Assisi”. Journal of Cultural Heritage, 2000, vol. 1, pp. 7–18.
[19] S. Hemeda, “3D finite element coupled analysis model for geotechnical and complex structural problems of historic masonry structures: conservation of Abu Serga church, Cairo, Egypt”, Heritage Science, 2019, vol. 6.
[20] K. Papadopoulos, “The Restoration of the North-Side Foundation of the Temple of Apollo Epikourios”, International Journal of Architectural Heritage, 2010, DOI: 10.1080/15583050903121869.
[21] L. Schueremans, K. Van Balen, K. Brosens, D. Van Gemert, P. Smars, “Church of Saint-James at Leuven: Structural Assessment and Consolidation Measures”, International Journal of Architectural Heritage, 2007, DOI: 10.1080/15583050601126137.
[22] “Public records of Lublin City 1465-1810” (in Polish). National Archives in Lublin.
[23] B. Nowak, “Lublin Guidebook” (in Polish), Test, Lublin, 2000.
[24] A. Halicka, A. Ostanska, “Selection of repair materials for the restoration of historic monastery masonry” (in Polish), in: Ecology in the building processes. Lublin University of Technology, Lublin 2003, pp. 185–192.
[25] A. Halicka, A. Ostanska, “Strengthening of the corner of historic Dominican monastery in Lublin” (in Polish), Przeglad budowlany 2004, vol. 7-8, pp. 32–36.
[26] J. Lewicki, “Free-standing early medieval building in Dominican Monastery in Lublin” (in Polish), in: Medieval sacral architecture inPoland in the light of new research. Biblioteka Poczatków Panstwa Polskiego, Gniezno, 2014, 173–189.
[27] J. Jasienko, D. Logon, W. Misztal, “Trass-lime reinforced mortars in strengthening and reconstruction of historical masonry walls”, Construction and Building Materials, 2016, vol. 102, pp. 884–892.
[28] M. Corradi, A. Di Schino, A. Borri, R. Rufini, “A review of the use of stainless steel for masonry repair and reinforcement”, Construction and Building Materials, 2018, vol. 181.
[29] P. Zampieri, N.Simoncello, C.D. Tetougueni, C. Pellegrino, “A review of methods for strengthening of masonry arches with composite materials”, Engineering Structures, 2018, vol. 171, pp. 154–169.
[30] F.G. Carozzi, C. Poggi, E. Bertolesi, G. Milani, “Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation”, Composite Structures, 2018, vol. 187, pp. 466–480.
Go to article

Authors and Affiliations

Anna Halicka
1
ORCID: ORCID
Anna Ostańska
1
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, ul. Nadbystrzycka 40, 20-618 Lublin
Download PDF Download RIS Download Bibtex

Abstract

A group of old apartment houses with the age over 100 years (that is those carried out before the First World War) takes an important place in polish building resources. Technical maintenance of apartment houses, traditional methods erected, is nowadays and will be a valid problem in the nearest future. The results of the work refer to the general population, estimated for 600 objects, that is about 20% of municipal downtown apartment houses in Wrocław.

The purpose of the research was to identify an influence of widely considered maintenance of apartment houses on a degree and intensity of their elements’ deterioration. The goal of the work has been fulfilled by symptoms’ analysis of declining of inspected elements’ exploitation values, that is identification of mechanics of their defects arising.

The range of the work has required creation of original qualitative model of pinpointed defects and its transfer into quantitative one. It has made possible to analyse the reason - effect phenomena „defect - technical wear” relevant to the most important elements of Wroclaw downtown district’s apartment houses. The research procedure has been conducted in accordance of fuzzy sets theory which made possible to describe qualitative model of pinpointed defects and its transfer into a quantitative one.

Go to article

Authors and Affiliations

J. Konior
Download PDF Download RIS Download Bibtex

Abstract

Planning maintenance costs is not an easy task. The amount of costs depends on many factors, such as value, age, condition of the property, availability of necessary resources and adopted maintenance strategy. The paper presents a selection of models which allow to estimate the costs of building maintenance, which are then applied to an exemplary office building. The two of the models allow a quick estimation of the budget for the maintenance of the building, following only indicative values. Two other methods take into account the change in the value of money over time and allow to estimate, assuming the adopted strategy and assumed costs, the value of the current amount allocated to the maintenance of the building. The final model is based on the assumptions provided for in Polish legislation. Due to significant simplifications in the models, the obtained results are characterized by a considerable discrepancy. However, they may form the basis for the initial budget planning related to the maintenance of the building. The choice of the method is left to the decision makers, but it is important what input data the decision maker has and the purpose for which he performs the cost calculation.
Go to article

Authors and Affiliations

Edyta Plebankiewicz
1
ORCID: ORCID
Agnieszka Leśniak
1
ORCID: ORCID
Eva Vitkova
2
ORCID: ORCID
Vit Hromadka
2
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Kraków, Poland
  2. Brno University of Technology, Faculty of Civil Engineering, Veverí 331/95, 602 00 Brno, Czech Republik
Download PDF Download RIS Download Bibtex

Abstract

The presented analysis concerns deflections of the reinforced concrete slab in the fire-fighting water storage tank with volume of 950 m3. It was built on human-altered soil which led to deflection of the tank. When water was pumped out from the tank, rectification was performed. The tank and its slab foundation were non-uniformly elevated by means of hydraulic jacks. These jacks were installed under the slab, on foundation made of concrete block stacks, which were pressed into the ground. The computational analysis was conducted for displacements and deflections of the slab supported on the jacks. The number of jacks under the slab and stiffness of jack supports on the stacks were the variable parameters of the model. Stiffness of the jack supports was found to have non-significant impact on deflections of the foundation slab of the rectified tank. On the other hand, the number of jacks under the tank affected both deflections of the slab and displacements of the whole tank. The greatest deflection of the tank slab supported on three jacks was 15.233 mm, and the smallest one was 10.435 mm at 32 jacks.
Go to article

Authors and Affiliations

Krzysztof Gromysz
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, ul. Akademicka 5, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more