Details

Title

The role of structural analyses and queries in recognizing damage causes and selecting remedies in historic buildings: case of the Dominican monastery in Lublin

Journal title

Archives of Civil Engineering

Yearbook

2022

Volume

vol. 68

Issue

No 1

Authors

Affiliation

Halicka, Anna : Lublin University of Technology, Faculty of Civil Engineering and Architecture, ul. Nadbystrzycka 40, 20-618 Lublin ; Ostańska, Anna : Lublin University of Technology, Faculty of Civil Engineering and Architecture, ul. Nadbystrzycka 40, 20-618 Lublin

Keywords

damage ; historic building ; rehabilitation ; structural diagnostics ; structural system

Divisions of PAS

Nauki Techniczne

Coverage

413-430

Publisher

WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCES

Bibliography

[1] E. Radziszewska-Zielina, G. Sladowski, “Supporting the selection of a variant of the adaptation of a historical building with the use of fuzzy modelling and structural analysis”, Journal of Cultural Heritage, 2017, vol. 26, pp. 53–63.
[2] L. Czarnecki and D. Van Gemert, “Scientific basis and rules of thumb in civil engineering: conflict or harmony”, Bulletin of Polish Academy of Science: Technical sciences, 2016, vol. 64, pp. 665–673.
[3] G. Barbieri, M. Valente, L. Biolzi, C. Togliani, L. Fregonese, G. Stanga, “An insight in the late Baroque architecture: An integrated approach for a unique Bibiena church”, Journal of Cultural Heritage, 2017, vol. 23, pp. 58–67.
[4] M. P. Sammartino, G. Cau, R. Reale, S. Ronca, G. Visco, “A multidisciplinary diagnostic approach preliminary to the restoration of the country church “San Maurizio” located in Ittiri (SS)”, Heritage Science 2, 2014, vol. 4.
[5] E. Diz-Mellado, E.J. Mascort-Albea, R. Romero-Hernández, C. Galán-Martín, C. Rivera-Gòmez, J. Ruiz- Jaramillo, A. Jaramillo-Morilla, “Non-destructive testing and Finite Element Method integrated procedure for heritage diagnosis: The Seville Cathedral case study”, Journal of Building Engineering, 2021, vol. 37, p. 102134.
[6] M.F. Funari, S. Spadea, P. Lonetti, F. Fabbrocino, R. Luciano, “Visual programming for structural assessment of out-of-plane mechanism in historic masonry structures”, Journal of Building Engineering, 2020, vol. 31, p. 101425.
[7] M.A. Nùñez-Andrés, F. Buill, A. Costa-Jover, J.M. Puche, “Structural assessment of Roman wall and vaults in the cloister of Tarragona Cathedral”, Journal of Building Engineering, 2017, vol. 13, pp. 77–86.
[8] C. Akcay, A. Solt,N.M.Korkmaz, B. Sayin, “Aproposal for the reconstruction of historical masonry building constructed in Ottoman Era (Istambul)”, Journal of Building Engineering, 2020, vol. 32, pp. 101493.
[9] ICOMOS: “Recommendation for the analysis, conservation and structural restoration of architectural heritage”. 2003. Website of International Council of Monuments and sites. https://www.icomos.org/en/aboutthe-centre/179-articles-en-francais/ressources/charters-and-standards/165-icomos-charter-principles-forthe- analysis-conservation-and-structural-restoration-of-architectural-heritage. Accessed 10 Feb. 2021
[10] C. Alessandri, V. Mallardo, “Structural assessments of the Church of the Nativity in Bethlehem”, Journal of Cultural Heritage, 2012, vol. 13, Supplement, pp. e61–e69.
[11] A. Anzani, L. Binda, A. Carpinteri, S. Invernizzi, G. Lacidogna, “A multilevel approach for the damage assessment of Historic masonry towers”, Journal of Cultural Heritage, 2010, vol. 11, pp. 459–470.
[12] L. Binda, A. Saisi, C. Tiraboschi, “Investigation procedures for the diagnosis of historic masonries”, Construction and Building Materials, 2000, vol. 14, pp. 199–233.
[13] P. B. Lourenço, “Recommendations for restoration of ancient buildings and the survival of masonry chimney”, Construction and Building Materials, 2006, vol. 20, pp. 239–251.
[14] M-G. Masciotta, L. F. Ramos, P. B.Lourenço, “The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal”, Journal of Cultural Heritage, 2017, vol. 27, pp. 36–47.
[15] G. Teza, S. Trevisani, A. Pesci, “The role of geoenvironmental sciences in Cultural Heritage preservation: the case of 1000 year old leaning bell tower of Caorle (Venice)”. Journal of Cultural Heritage, 2019, vol. 39, pp. 270–277.
[16] C. Alessandri, M. Garutti, V. Mallardo, G. Milani, “Crack Patterns Induced by Foundation Settlements: Integrated Analysis on a Renaissance Masonry Palace in Italy”, International Journal of Architectural Heritage, 2015, vol. 9, pp. 111–129.
[17] M. Betti, M. Orlando, A. Vignoli, “Static behaviour of an Italian Medieval Castle: Damage assessment by numerical modelling”, Computer Structures, 2011, vol. 89, pp. 1956–1970.
[18] G. Croci, “General methodology for the structural restoration of historic buildings: the cases of the Tower of Pisa and the Basilica of Assisi”. Journal of Cultural Heritage, 2000, vol. 1, pp. 7–18.
[19] S. Hemeda, “3D finite element coupled analysis model for geotechnical and complex structural problems of historic masonry structures: conservation of Abu Serga church, Cairo, Egypt”, Heritage Science, 2019, vol. 6.
[20] K. Papadopoulos, “The Restoration of the North-Side Foundation of the Temple of Apollo Epikourios”, International Journal of Architectural Heritage, 2010, DOI: 10.1080/15583050903121869.
[21] L. Schueremans, K. Van Balen, K. Brosens, D. Van Gemert, P. Smars, “Church of Saint-James at Leuven: Structural Assessment and Consolidation Measures”, International Journal of Architectural Heritage, 2007, DOI: 10.1080/15583050601126137.
[22] “Public records of Lublin City 1465-1810” (in Polish). National Archives in Lublin.
[23] B. Nowak, “Lublin Guidebook” (in Polish), Test, Lublin, 2000.
[24] A. Halicka, A. Ostanska, “Selection of repair materials for the restoration of historic monastery masonry” (in Polish), in: Ecology in the building processes. Lublin University of Technology, Lublin 2003, pp. 185–192.
[25] A. Halicka, A. Ostanska, “Strengthening of the corner of historic Dominican monastery in Lublin” (in Polish), Przeglad budowlany 2004, vol. 7-8, pp. 32–36.
[26] J. Lewicki, “Free-standing early medieval building in Dominican Monastery in Lublin” (in Polish), in: Medieval sacral architecture inPoland in the light of new research. Biblioteka Poczatków Panstwa Polskiego, Gniezno, 2014, 173–189.
[27] J. Jasienko, D. Logon, W. Misztal, “Trass-lime reinforced mortars in strengthening and reconstruction of historical masonry walls”, Construction and Building Materials, 2016, vol. 102, pp. 884–892.
[28] M. Corradi, A. Di Schino, A. Borri, R. Rufini, “A review of the use of stainless steel for masonry repair and reinforcement”, Construction and Building Materials, 2018, vol. 181.
[29] P. Zampieri, N.Simoncello, C.D. Tetougueni, C. Pellegrino, “A review of methods for strengthening of masonry arches with composite materials”, Engineering Structures, 2018, vol. 171, pp. 154–169.
[30] F.G. Carozzi, C. Poggi, E. Bertolesi, G. Milani, “Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation”, Composite Structures, 2018, vol. 187, pp. 466–480.

Date

2022.03.30

Type

Article

Identifier

DOI: 10.24425/ace.2022.140176
×