Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The carbothermic reduction of calcined magnesite in vacuum was studied. By thermodynamic analysis, the starting temperature of reduction reaction dropped from 2173K to 1523K when system pressure dropped from 1 atmosphere to 100 Pa. The experiments were carried out at different conditions under 10~100 Pa and the experimental results shown that the reduction extent of MgO improved by increasing the reaction temperature and time, the pellet forming pressure as well as adding fluoride as catalyst. The rate-determining step of carbothermic reduction process was gas diffusion with the apparent activation energy of 241.19~278.56 kJ/mol.
Go to article

Authors and Affiliations

Qifeng Tang
1
ORCID: ORCID
Jinqing Ao
1
ORCID: ORCID
Biyou Peng
1
ORCID: ORCID
Biao Guo
1
ORCID: ORCID
Tao Yang
1
ORCID: ORCID

  1. Xihua University, College of Materials Science and Engineering, Chengdu 610039, PR China
Download PDF Download RIS Download Bibtex

Abstract

Vanadium carbide is important for industrial applications because of its high hardness, high temperature resistance, high chemical, and thermal stability. It is generally obtained from the reaction between V and C powders at a high temperature ranging from 1100 to 1500°C. Investigations on these high strength, high abrasion resistant, hard materials have been intensified in recent years and consequently, significant improvements have been achieved. In this study, VC alloys are produced with low cost processes, by reducing the oxides of their components by SHS methods and ball mill-assisted carbothermal reduction. In the experimental stage, V2O5 was used as oxidized Vanadium source, Cblack as carbon source, magnesium and Cblack as reductant. In the study, VC powders were synthesized by two different methods and optimum production conditions were determined. Furthermore, the effect of different stoichiometric charge components and the effect of experiment durations were realized by X-ray diffraction, HSC Chemistry, and SEM analyses for different reductants.
Go to article

Authors and Affiliations

Mehmet Bugdayci
1
Levent Once
2
Murat Alkan
Ahmet Turan
3
Umay Cinarli
4

  1. Yalova University, Faculty of Engineering, Chemical Engineering Department, 77200, Yalova, Turkey; Istanbul Medipol University, Vocational School, Construction Technology Department, 34810, Istanbul, Turkey
  2. Sinop University, Faculty of Engineering and Architecture, Metallurgical and Materials Engineering Department, 57000, Sinop, Turkey
  3. Dokuz Eylul University, Engineering Faculty, Department of Metallurgical and Materials Engineering, 35390, Izmir, Turkey
  4. Yeditepe University, Engineering Faculty, Materials Science and Nanotechnology Engineering Department, 34755, Istanbul, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Much zinc residue is produced during the traditional processes involved in zinc hydrometallurgy in the leaching stage: its composition is complex and valuable metals are difficult to recover therefrom. If not handled properly, it can lead to a waste of resources and environmental pollution. To solve this problem, zinc leach residue specimens were treated using the carbothermal reduction method (CTR) that is easy to operate and has a high energy utilisation rate. The methods, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM) were used for analytical characterisation. Based on this, this research investigated a structure-function relationship between microstructures and microwave-absorbing properties of ZnO smoke from CTR-treated zinc leach residue. The results demonstrate that microstructures and macro-properties of ZnO smoke obtained at different temperatures differ greatly. Under conditions including a calcination temperature of 1250°C, holding time of 60 min, and addition of 50% and 10% of powdered coal and CaO separately, the ZnO content in the obtained smoke is 99.14%, with regular micron-sized ZnO particles therein. For these particles, the minimum reflection loss (RLmin) reached –25.56 dB at a frequency of 15.84 GHz with a matching thickness of 5 mm. Moreover, frequency bandwidth corresponding to RL < –10 dB can reach 2.0 GHz. ZnO smoke obtained using this method is found to have excellent microwave-absorbing performance, which provides a new idea for high-value applications of zinc-rich residue.
Go to article

Bibliography

[1] M. Li, B. Peng, L.Y. Chai, Technological Mineralogy and Environmental Activity of Zinc Leaching Residue from Zinc Hydrometallurgical Process, T. Nonfer. Metal. Soc. 23 (5), 1480-1488 (2013). DOI: https://doi.org/10.1016/S1003-6326(13)62620-5
[2] G .M. Jiang, B. Peng, Y.J. Liang, Recovery of Valuable Metals from Zinc Leaching Residue by Sulfate Roasting and Water Leaching, T. Nonfer. Metal. Soc. 27, 1180-1187 (2017). DOI: https://doi.org/10.1016/S1003-6326(17)60138-9
[3] H . Yan, L.Y. Chai, B. Peng, A Novel Method to Recover Zinc and Iron from Zinc Leaching Residue, Mine Eng. 55, 103-110 (2014). DOI: https://doi.org/10.1016/j.mineng.2013.09.015
[4] W . Luo, Q. Feng, L. Ou, Kinetics of Saprolitic Laterite Leaching by Sulphuric Acid at Atmospheric Pressure, Mine Eng. 23 (6), 458- 462 (2010). DOI: https://doi.org/10.1016/j.mineng.2009.10.006
[5] L. Tang, C.B. Tang, J. Xiao, A Cleaner Process for Lead Recovery from Lead-containing Hazardous Solid Waste and Zinc Leaching Residue Via Reducing-matting Smelting, J. Clean Prod. 241, 1-8 (2019). DOI: https://doi.org/10.1016/j.jclepro.2019.118328
[6] A . Özverdi, M. Erdem, Environmental Risk Assessment and Stabilization/Solidification of Zinc Extraction Residue: I. Environmental Risk Assessment, Hydrometallurgy 100, 103-109 (2010). DOI: https://doi.org/10.1016/j.hydromet.2009.10.011
[7] J.M. Steer, A.J. Giffiths, Investigation of Carboxylic Acids and Non-aqueous Solvents for the Selective Leaching of Zinc from Blast Furnace Dust Slurry, Hydrometallurgy 140, 34-4 1(2013). DOI: https://doi.org/10.1016/j.hydromet.2013.08.011
[8] P. Xing, B.Z. Ma, P. Zeng, Deep Cleaning of a Metallurgical Zinc Leaching Residue and Recovery of Valuable Metals, Int. J. Min. Met. Mater. 24 (11), 1217-1227 (2017). DOI: https://doi.org/10.1007/s12613-017-1514-2
[9] S. Wang, Y.Y. Shen, S.Q. Zhang. Leaching of High Arsenic Content Dust and a New Process for the Preparation of Copper Arsenate, Arch. Metall. Mater. 63 (3), 1167-1172 (2018). DOI: https://doi.org/10.24425/123789
[10] X.B. Li, C. Wei, Z.G. Deng, Extraction and Separation of Indium and Copper from Zinc Residue Leach Liquor by Solvent Extraction, Sep. Purif. Technol. 156, 348-355 (2015). DOI: https://doi.org/10.1006/j.seppur.2015.10.021
[11] O .N. Kononova, A.G. Kholmogorov, N.V. Danilenko, Recovery of Silver from Thiosulfate and Thiocyanante Leach Solutions by Adsorption on Anion Exchange Resins and Activated Carbon, Hydrometallurgy 88, 189-195 (2007). DOI: https://doi.org/10.1016/j.hydromet.2017.03.012
[12] G .G. Mei, D.R. Wang, J.Y. Zhou, Zinc Hydrometallurgy [M], Central South University of Technology Press, 2001 China, Changsha.
[13] G . Yu, N. Peng, L. Zhou, Selective Reduction Process of Zinc Ferrite and its Application in Treatment of Zinc Leaching Residues. T. Nonfer. Metal. Soc. 55, 103-110 (2014). DOI: https://doi.org/10.1016/S1003-6326(15)63899-7
[14] I . M. Alibe, K.A. Matori, H.A.A. Sidek, The Influence of Calcination Temperature on Structural and Optical Properties of ZnOSiO2 Nanocomposite by Simple Thermal Treatment Route, Arch. Metall. Mater. 63 (2), 539-545 (2018). DOI: https://doi.org/10.24425/118972
[15] M.H. Tang, M.Z. Chen, X. Zhu, Elimination of 180° Non-uniqueness of ZnO Diffraction Pattern, Anal. Test. Technol. Instrum. 23 (2), 130-134 (2017). DOI: https://doi.org/10.16495/j.1006-3757.2017.02.012
[16] G .Z. Liu, Z.D. Wang, Z.G. Wan, Study on Microwave Synthesis of ZnO Microrods, J. Hubei. Univ. Technol. 22 (5), 5-7 (2007).
[17] I .M. Alibe, K.A. Matori, E. Saion, The Influence of Calcination Temperature on Structural and Pptical Properties of ZnO Nanoparticles Via Simple Polymer Synthesis Route, Sci. Sinter. 49 (3), 263-275 (2017). DOI: https://doi.org/10.2298/SOS1703263A
[18] I .M. Alibe, K.A. Matori, H.A.A. Sidek, Effects of Calcination Holding Time on Properties of Wide Band Gap Willemite Semiconductor Nanoparticles by the Polymer Thermal Treatment Method, Molecules 23 (4), 1-18 (2018). DOI: https://doi.org/10.3390/molecules23040873
[19] S. Geetha, K.K.K. Satheesh, C.R.K. Rao, EMI Shielding: Methods and Materials. A Review. J. Appl. Polym. Sci. 112 (4), 2073-2086 (2010). DOI: https://doi.org/10.1002/app.29812
[20] L.L. Yan, M. Zhang, S.C. Zhao, Wire-in-tube ZnO@carbon by Molecular Layer Deposition: Accurately Tunable Electromagnetic Parameters and Remarkable Wave Absorption, Chem. Eng. J. 382, 1-11 (2020). DOI: https://doi.org/10.1016/j.cej.2019.122860
[21] X. Meng, Y.Q. Liu, G.H. Han, Three-dimensional (Fe3O4/ ZnO)@C Double-core@shell Porous Nanocomposites with Enhanced Broadband Wave Absorption, Carbon 162, 356-364 (2020). DOI: https://doi.org/10.1016/j.carbon.2020.02.035
[22] L.Z. Zhao, S.X. Hu, S.W. Li, Absorption Principle and Research Progress of Absorbing Materials, Modern Defense. Technol. 35 (1), 27-31 (2007).
[23] X.J. Zhang, G.S. Wang, Y.Z. Wei, Polymer-composite with High Dielectric Constant and Enhanced Absorption Properties Based on Grapheme-CuS Nanocomposites and Polyvinylidene Fluoride, J. Mater. Chem. A 1 (39), 12115-12122 (2013). DOI: https://doi.org/10.1039/c3ta12451g
Go to article

Authors and Affiliations

Zhiwei Ma
1
ORCID: ORCID
Sheng Wang
1
ORCID: ORCID
Xueyan Du
1
ORCID: ORCID
Ji Zhang
1
ORCID: ORCID
Ruifeng Zhao
1
ORCID: ORCID
Shengquan Zhang
1
ORCID: ORCID

  1. Lanzhou University of Technology, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China

This page uses 'cookies'. Learn more