Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 25
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the research was to examine the influence of boron on the selected properties of low-alloy cast steels. The chemical compositions of the cast steels were designed especially for this study to contain different alloy elements. The first composition lacked significant alloying elements. The subsequent grades of cast steels had the addition of chrome, chrome with vanadium, and chrome with titanium. It was decided to investigate the influence of boron in the presence of such alloying additives on the temperature of phase transformations. On the basis of dilatometric curves, the characteristic temperatures of the phase transformations were determined. Additionally, to assess the influence of the cooling rate on the structure of cast steels, an analysis of their microstructure, after full annealing and quenching, was carried out.
Go to article

Authors and Affiliations

B. Białobrzeska
1
ORCID: ORCID
R. Dziurka
2
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Department of Vehicle Engineering, Smoluchowskiego Str. 25, 50-370 Wroclaw, Poland
  2. University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Sciences, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The subject of the work are modern composite materials with increased wear resistance intended for elements of machines operating in difficult conditions in the construction and mining industries. The study determined the effect of zone reinforcement of GX120Mn13 cast steel with macroparticles (Al 2O 3+ZrO 2) on the corrosion resistance and abrasion wear of the composite thus obtained. SEM studies have shown that at interface between two phases, and more precisely on the surface of particles (Al 2O 3+ZrO 2) a durable diffusion layers are formed. During the corrosion tests, no significant differences were found between the obtained parameters defining the corrosion processes of GX120Mn13 cast steel and GX120Mn13 with particles (Al 2O 3+ZrO 2) composite. No intergranular corrosion was observed in the matrix of the composite material, nor traces of pitting corrosion at both phases interface. This is very important in terms of tested material’s service life. Reinforcement of cast steel with particles (Al 2O 3+ZrO 2) resulted in a very significant improvement in the abrasion resistance of the composite – by about 70%. After corrosion tests, both materials were subjected to further operational investigations. These examinations consisted in determining the impact of corrosion processes on the durability of the composite in terms of abrasion. The obtained results indicate that corrosion processes did not significantly deteriorate the wear resistance of both the cast steel and the composite.
Go to article

Bibliography

[1] Uetz, H. (1986). Abrasion and Erosion. Munich–Vienna: Carl Hanser Verlag Publ.
[2] Hebda, M., Wachal, A. (1980). Trybology. Warsaw: Scientific and Technical Publ (in Polish).
[3] Kalandyk, B., Zapała, R., Kasińska, J. & Madej, M. (2021). Evaluation of microstructure and tribological propertiesof GX120Mn13 and GX120MnCr18-2 cast steels. Archives of Foundry Engineering. 21(4), 67-76. DOI: 10.24425/afe.2021.138681.
[4] Marcus, P. (2017). Corrosion mechanisms in theory and practice. London–New York: CRC Press.
[5] Podrzucki, C. (1991). Cast iron. Structure, properties, application. vol. 2. Krakow: ZG STOP Publ (in Polish).
[6] Kaczmar, J., Janus, A., Samsonowicz, Z. (1998). Influence of technological parameters on the production of selected parts of machines reinforced with ceramic fibers. Report of Institute of Machine and Automation Technology, Wroclaw University of Science and Technology, Series SPR, 35 (in Polish). [7] Kurzawa, A., Kaczmar, J.W. & Janus, A. (2008). Selected mechanical properties of aluminum composite materials reinforced with SiC particles. Archives of Foundry Engineering. 8(2), 99-102.
[8] Kaczmar, J.W. & Kurzawa, A. (2012). The effect of α-alumina particles on the properties of EN AC-44200 Al alloy based composite materials. Journal of Achievements in Materials and Manufacturing Engineering. 55(1), 39-44.
[9] Jach, K., Pietrzak K., Wajler, A., Sidorowicz, A. & Brykała, U. (2013). Application of ceramic preforms to the manufacturing of ceramic – metal composites. Archives of Metallurgy and Materials, 58(4), 1425-1428. DOI: 10.2478/amm-2013-0188.
[10] Gawroński, J., Szajnar, J. & Wróbel, P. (2004). Study on theoretical bases of receiving composite alloy layers on surface of cast steel castings. Journal of Materials Processing Technology. 157, 679-682. DOI: 10.1016/j.jmatprotec.2004.07.153.
[11] Szajnar, J., Walasek, A., & Baron, C. (2013). Tribological and corrosive properties of the parts of machines with surface alloy layer. Archives of Metallurgy and Materials. 58(3), 931-936. DOI: 10.2478/amm-2013-0104.
[12] Hryniewicz, T., Rokosz, K. (2010). Theoretical basis and practical aspects of corrosion. Koszalin: Publ. House of Koszalin University of Technology (in Polish).
[13] Medyński, D. & Chęcmanowski, J. (2022). Corrosion resistance of L120G13 steel castings zone-Reinforced with Al2O3. Materials. 15(12), 4090, 1-14. https://doi.org/10.3390/ma15124090.
[14] Song, Y., Jiang, G., Chen, Y., Zhao, P. & Tian, Y. (2017). Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Scientific Reports. 7, 6865, 1-13. https://doi.org/10.1038/s41598-017-07245-1.

Go to article

Authors and Affiliations

Daniel Medyński
1
ORCID: ORCID

  1. Witelon Collegium State University, Poland
Download PDF Download RIS Download Bibtex

Abstract

Casting is the most economical way of producing parts for many industries ranging from automotive, aerospace to construction towards small appliances in many shares. One of the challenges is the achievement of defect-free cast parts. There are many ways to do this which starts with calculation and design of proper runner system with correct size and number of feeders. The first rule suggests starting with clean melt. Yet, rejected parts can still be found. Although depending on the requirement from the parts, some defects can be tolerated, but in critical applications, it is crucial that no defect should exist that would deteriorate the performance of the part. Several methods exist on the foundry floor to detect these defects. Functional safety criteria, for example, are a must for today's automotive industry. These are not compromised under any circumstances. In this study, based on the D-FMEA (Design Failure Mode and Effect Analysis) study of a functional safety criterion against fuel leakage, one 1.4308 cast steel function block, which brazed-on fuel rail port in fuel injection unit, was investigated. Porosity, buckling, inclusion and detection for leak were carried out by non-destructive test (NDT) methods. It was found that the best practice was the CT-Scan (Computed Tomography) for such applications.
Go to article

Bibliography

[1] Stefanescu, D.M. (2005). Computer simulation of shrinkage related defects in metal castings–a review. International Journal of Cast Metals Research. 18(3), 129-143.
[2] Kweon, E.S., Roh, D.H., Kim, S.B. & Stefanescu, D.M. (2020). Computational modeling of shrinkage porosity formation in spheroidal graphite iron: a proof of concept and experimental validation. International Journal of Metalcasting. 14, 601-609.
[3] Campbell, J. (2015). Complete casting handbook: metal casting processes, metallurgy, techniques and design. Butterworth-Heinemann.
[4] Duckers, (2015). AISI Materials Content Analysis: Final Report.
[5] Meola, C., Squillace, A., Minutolo, F.M.C. & Morace, R.E. (2004). Analysis of stainless steel welded joints: a comparison between destructive and non-destructive techniques. Journal of Materials Processing Technology. 155, 1893-1899.
[6] Menzies I. & Koshy, P. (2009). In-process detection of surface porosity in machined castings. International Journal of Machine Tools and Manufacture. 49(6), 530-535.
[7] Ushakov, V.M., Davydov, D.M. & Domozhirov, L.I. (2011). Detection and measurement of surface cracks by the ultrasonic method for evaluating fatigue failure of metals. Russian Journal of Nondestructive Testing. 47(9), 631-641.
[8] Vazdirvanidis, A., Pantazopoulos, G. & Louvaris, A. (2009). Failure analysis of a hardened and tempered structural steel (42CrMo4) bar for automotive applications. Engineering Failure Analysis. 16(4), 1033-1038.
[9] Gupta, R.K., Ramkumar, P. & Ghosh, B.R. (2006). Investigation of internal cracks in aluminium alloy AA7075 forging. Engineering Failure Analysis. 13(1), 1-8.
[10] Smokvina Hanza S. & Dabo, D. (2017). Characterization of cast iron using ultrasonic testing, HDKBR INFO Mag. 7(1), 3-7.
[11] Krautkrämer, J. & Krautkrämer, H. (1990). Ultrasonic Testing of Materials” Springer-Verlag.
[12] Ziółkowski, G., Chlebus, E., Szymczyk, P. & Kurzac, J. (2014). Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology. Archives of Civil and Mechanical Engineering. 14(4), 608-614.
[13] A. du Plessis, A., le Roux, S.G. & Guelpa, A. (2016). Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Studies in Nondestructive Testing and Evaluation. 6(A), 17-25.
[14] Kurz, J.H., Jüngert, A., Dugan, S., Dobmann, G. & Boller, C. (2013). Reliability considerations of NDT by probability of detection (POD) determination using ultrasound phased array. Engineering Failure Analysis. 35, 609-617.
[15] Sika, R., Rogalewicz, M., Kroma, A. & Ignaszak, Z. (2020). Open atlas of defects as a supporting knowledge base for cast iron defects analysis. Archives of Foundry Engineering. 20(1), 55-60.

Go to article

Authors and Affiliations

K.C. Dizdar
1
ORCID: ORCID
H. Sahin
1
ORCID: ORCID
M. Ardicli
2
D. Dispinar
3
ORCID: ORCID

  1. Istanbul Technical University, Turkey
  2. Bosch Powertrain Solutions, Bursa, Turkey
  3. Foseco Non-Ferrous Metal Treatment, Netherlands
Download PDF Download RIS Download Bibtex

Abstract

The results of microstructure examinations and UTS, YS, El, RA carried out on low-carbon cast steel containing 0.15% C. The tests were carried out on specimens cut out from samples cast on a large-size casting and from samples cast in separate foundry moulds. It has been shown that significant differences in grain size observed in the material of the separately cast samples and cast-on samples occur only in the as-cast. In the as-cast state, in materials from different tests, both pearlite percent content in the structure and mean true interlamellar spacing remain unchanged. On the other hand, these parameters undergo significant changes in the materials after heat treatment. The mechanical properties (after normalization) of the cast-on sample of the tested cast steel were slightly inferior to the values obtained for the sample cast in a separate foundry mould. The microscopic examinations of the fracture micro-relief carried out by SEM showed the presence of numerous, small non-metallic inclusions, composed mainly of oxide-sulphides containing Mn, S, Al, Ca and O, occurring individually and in clusters.
Go to article

Bibliography

[1] Kniaginin, G. (1977). Metallurgy and casting of steel. Katowice: Śląsk. (in Polish).
[2] Standard PN-ISO 3755-1994. Cast carbon steels for general engineering purposes.
[3] Głownia, J. (2017). Metallurgy and technology of steel castings. Sharjah: Bentham Books. ISBN: 978-1-68108-571-5.
[4] Kasińska, J. (2017). Effects of rare earth metal addition on wear resistance of chromium-molybdenum cast steel. Archives of Foundry Engineering. 17(3), 63-68. ISSN: 1897-3310.
[5] Lis, T. (2009). High purity steel metallurgy. Gliwice: Wyd. Politechniki Śląskiej. (in Polish).
[6] Torkamani, H., Raygan, S., Mateo, C. G., Rassizadehghani, J. & Palizdar, Y. et al. (2018). Contributions of rare earth element (La, Ce) addition to the impact toughness of low carbon cast niobium microalloyed steels. Metals and Materials International. 24(4), 773-788. DOI: 10.1007/ s12540-018-.0084-9.
[7] Bartocha, D., Suchoń, J., Baron, Cz. & Szajnar, J. (2015). Influence of low alloy cast steel modification on primary structure refinement type and shape of nonmetallic inclusions. Archives of Metallurgy and Materials. 60(1). 77-83. DOI: 10.1515/2015-0013.
[8] Żak, A., Zdonek, B., Adamczyk, M., Szypuła, I., Kutera, W. & Kostrzewa, K. (2015) Technology for manufacturing large – size steel castings for applications under extreme operating conditions. Prace IMŻ. 2: 21-28.
[9] Najafi, H., Rassizadehghani, J. & Halvaaee, A. (2007) Mechanical properties of as-cast microalloyed steels containing V, Nb and Ti. Materials Science and Technology. 23, 699-705. https ://doi.org/10.1179/17432 8407X17975 5.
[10] Miernik, K., Bogucki, R. & Pytel, S. (2010) Effect of quenching techniques on the mechanical properties of low carbon structural steel. Archives Foundry Engineering. 10 (SI 3), 91-96.
[11] Brooks, Ch. R. (1999). Principles of the heat treatment of plain carbon and low alloy steels. Materials Park: ASM International.
[12] Bolouri, A., Tae-Won, Kim & Chung, Gil Kang. (2013). Processing of low-carbon cast steels for offshore structural applications. Materials and Manufacturing Processes. 28: 1260-1267. DOI: 10.1080/10426914.2013.792424.
[13] Standard PN-EN ISO 3755-1994. 6892-1:2009. Metallic materials. Tensile testing. Part 1: Method of test at room temperature.
[14] Ryś, J. (1983). Quantitative metallography. AGH. (in Polish).
[15] Vander Voort, G. F. (1984). Measurement of the interlamellar spacing of pearlite. Metallography. 17: 1-17. https://doi.org/10.1016/0026-0800(84)90002-8.
[16] Wyrzykowski, J., W., Pleszakow, E., Sieniawski, J. (1999). M etal deformation and fracture. Warszawa: WNT. ISBN 83-204-2341-4. (in Polish).
[17] Maciejny, A. (1973). The fragility of metals. Katowice: Śląsk. (in Polish).
[18] Pacyna, J. (1986). Effects of nonmetallic inclusions on fracture toughness of tool steels. Steel Research. 57(11), 586-592. https://doi.org/10.1002/srin.198600830.

Go to article

Authors and Affiliations

B.E. Kalandyk
1
Renata E. Zapała
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Cast Alloys and Composites Engineering, Faculty of Foundry Engineering, ul. Reymonta 23, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The new cast steel with a chemical composition of Fe-(0.85-0.95)C-(1.50-1.60)Si-(2.40-2.60)Mn-(1.0-1.2)Al-(0.30-0.40)­Mo-(0.10-0.15)V-(1.0-1.1)Ni (all in wt.%) was investigated in aspect of formation of the multiphase microstructure leading to high strength and ductility. Two types of heat treatment technologies were developed. The first one involves softening annealing at a temperature of 650°C for 4 hours, heating up to 950°C and holding for 2 hours, and then fast cooling down to 200°C and isothermally treated for 2 hours. The second one involves homogenizing annealing at 1100°C for 6 hours, then cooling with furnace down to 950°C and holding for 2 hours, then fast cooling down to 200°C and isothermally treated for 2 hours. A unique microstructure of cast steel consisting of martensite and retained austenite plates of various thicknesses and volume fractions was obtained. Additionally, nanometric transition carbides were noticed after the above-mentioned heat treatments. This microstructure ensures high hardness, strength and plasticity ( Rm = 1426 MPa and A = 9.5%), respectively, due to the fact that TWIP/TRIP processes occur during deformation related to the high volume fraction of retained austenite, which the stacking fault energy is above 15 mJ/m –2 resulting from the chemical composition of the investigated cast steel.
Go to article

Authors and Affiliations

P. Garbień
1 2
A. Kokosza
3
W. Maj
2
Ł. Rogal
1
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
K. Janus
1
A. Wójcik
1
ORCID: ORCID
Z. Żółkiewicz
2
Wojciech Maziarz
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059, Kraków, Poland
  2. Specodlew Sp. z o.o. Rotmistrza Witolda Pileckiego 3 Str., 32-050 Skawina, Poland
  3. AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Duplex cast steel it is a material with great potential. The properties of this material have contributed to its wide application in many industrial sectors, for example: oil extraction, printing, petrochemical industry, energy - flue gas desulphurization systems, seawater desalination plants, shipbuilding industry. The article presents the results of tribological tests following the static pressure roller burnishing (SPRB) process of GX2CrNiMoN22-5-3 duplex cast steel. The tests provided a basis for assessing the effect of the burnishing parameters on tribological properties of that material. The issue is important because the authors focused their research on duplex cast steels grade that are not containing copper. The article presents part of the research concerning the influence of the burnishing process on the properties of the duplex steel surface layer. Copper in duplex steels affects many areas one of them is the plastic properties. Its absence also reduces castability. Because of that it is reasonable to determine to what extent the properties of the surface layer of copper-free duplex cast steel grades can be shaped in burnishing process.
Go to article

Authors and Affiliations

G.E. Stradomski
1
ORCID: ORCID
J. Fik
2
ORCID: ORCID
D. Rydz
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Poland
  2. Department of Advanced Computational Methods, Jan Dlugosz University in Czestochowa
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of research on steel castings GX120Mn13 (L120G13 by PN-89/H-83160), zone-reinforced by elektrocorundum particles (Al2O3), with a grain size from 2 to 3.5 mm. Studies revealed continuity at interface between composite components and formation of a diffusion zone in the surface layer of electrocorundum grains. In the area of this zone, simple manganese segregation and reverse iron and chromium segregation were found. The transfer of these elements from cast steel to electrocorundum grains resulted superficial depletion in aluminum and oxygen in this area. No porosity was observed at the interface between two components of the composite. We found it very beneficial from an exploitation point of view, as confirmed by the study of resistance to abrasive wear.
Go to article

Bibliography

[1] Matthews, F.L., Rawlings, R.D. (1999). Composite Materials. Engineering and Science. CRC Press: Boca Raton, FL, USA.
[2] Kocich, R., Kunčická, L., Král, P. & Strunz, P. (2018). Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Materials Design. 160, 828-835. Materials 2020. 13, 4161, p. 13 of 15.
[3] Kunčická, L., Kocich, R., Dvořák, K. & Macháčková, A. (2019). Rotary swaged laminated Cu-Al composites. Effect of structure on residual stress and mechanical and electric properties. Materials Science Engineering A. 742, 743-750.
[4] Kunčická, L., Kocich, R. (2018) Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 369, Kitakyushu City, Japan.
[5] Clyne, T.W., Withers, P.J. (1993) An Introduction to Metal Matrix Composites. Cambridge University Press: New York, NY, USA.
[6] Tjong, S. & Ma, Z. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science Engineering R: Reports 29, 49-113.
[7] Górny, Z., Sobczak, J. (2005). Modern casting materials based on non-ferrous metals. Krakow. Ed. ZA-PIS.
[8] Sobczak, J. & Sobczak, N. (2001). Pressure infiltration of porous fibrous structures with aluminum and magnesium alloys. Composites. 1(2), 155-158.
[9] Klomp, J. (1987). Fundamentals of diffusion bonding. Amsterdam Ed. Ishida, Elsevier Science Publishers, 3-24.
[10] Kaczmar, J., Janus, A., Samsonowicz, Z. (1997). Influence of technological parameters on production of selected machine parts reinforced with ceramic fibers. Reports of Institute of Machine Technology and Automation of Wrocław University of Science and Technology. SPR No 5.
[11] Kaczmar, J., Janus, A., Kurzawa, A. (2002). Development of basics technology of manufacturing machine and device parts from aluminum composites reinforced with zones of ceramic particles. Reports of Institute of Machine Technology and Automation of Wrocław University of Science and Technology. SPR No 11.
[12] Dmitruk, A.G., Naplocha, K., Żak, A. M., Strojny-Nędza, A., Dieringa, H. & Kainer, K. (2019). Development of pore-free Ti-Si-C MAX/Al-Si composite materials manufactured by squeeze casting infiltration. Journal of Materials Engineering and Performance. 28(10), 6248-6257.
[13] Maj, J., Basista, M., Węglewski, W., Bochenek, K., Strojny-Nędza, A., Naplocha, K., Panzner, T., Tatarková, M., Fiori, F. (2018). Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze casting. Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing. 715,154-162.
[14] Szajnar, J., Wróbel, P., Wróbel, T. (2008). Model castings with composite surface layer - application. Archive of Foudry Enginnering. 8(3), 105-110.
[15] Gawroński, J., Szajnar, J., Wróbel, P. (2005). Surface composite layers of cast iron - ceramic particles. Archive of Foundry. 5(17), 107-114.
[16] Marcinkowska, J. (1986). Wear-resistant casting coatings on cast steel. Solidification of Metals and Alloys. 6, 37-42.
[17] Baron, Cz., Gawroński, J. (2006). Abrasive wear resistance of sandwich composites based on iron alloys. Composites. 6(3), 45-49.
[18] Operation and maintenance documentation of test stand T-07.
Go to article

Authors and Affiliations

Daniel Medyński
ORCID: ORCID
A.J. Janus
1

  1. Witelon State University of Applied Science in Legnica ul. Sejmowa 5A, 59 – 220 Legnica, Poland
Download PDF Download RIS Download Bibtex

Abstract


Austenitic chromium-nickel cast steel is used for the production of machine parts and components operating under corrosive conditions combined with abrasive wear. One of the most popular grades is the GX2CrNi18-9 grade, which is used in many industries, and mainly in the chemical, food and mining industries for tanks, feeders, screws and pumps.
To improve the abrasion resistance of chromium-nickel cast steel, primary titanium carbides were produced in the metallurgical process by increasing the carbon content and adding titanium, which after alloy solidification yielded the test castings with the microstructure consisting of an austenitic matrix and primary carbides evenly distributed in this matrix.
The measured hardness of the samples in both as-cast conditions and after solution heat treatment was from 300 to 330HV0.02 and was higher by about 40-70 units compared to the reference GX2CrNi18-9 cast steel, which had the hardness of 258HV0.02.
The abrasive wear resistance of the tested chromium-nickel cast steel, measured in the Miller test, increased by at least 20% (with the content of 1.3 wt% Ti). Increasing the Ti content in the samples to 5.3 and 6.9 wt% reduced the wear 2.5 times compared to the common GX2CrNi18-9 cast steel.
Go to article

Bibliography

[1] Głownia, J. (2002). Alloy steel castings –applications. Kraków: Fotobit. (in Polish).
[2] Calliari, L., Brunelli, K., Dabala, M., & Ramous, E. (2009). Measuring secondary phases in duplex stainless steel. The Journal of The Minerals, Metals & Materials Society. JOM. 61, 80-83.
[3] Chen, T.H., & Yang, J.R. (2001). Effects of solution treatment and continuous cooling on σ phase precipitation in a 2205 duplex stainless steel. Materials Science and Engineering A. 313(1-2), 28-41.
[4] Kalandyk, B., Starowicz, M., Kawalec, M. & Zapała, R. (2013). Influence of the cooling rate on the corrosion resistance of duplex cast steel. Metalurgija. 52(1), 75-78.
[5] Jimenez, J.A., Carsi, M., Ruano, A. & Penabla, F. (2000). Characterization of a δ/γ duplex stainless steel. Journal of Materials Science. 35, 907-915.
[6] Voronenko, B.I. (1997). Austenitic-ferritic stainless steels: A state-of-the-art review. Metal Science and Heat Treatment. 39, 428-437.
[7] Pohl, M., Storz, O. & Glogowski, T. (2007). Effect of intermetallic precipitations on the properties of duplex stainless steel. Materials Characterization. 58(1), 65-71.
[8] Gunn, R. N. (1999). Duplex Stainless Steels: Microstructure, Properties and Applications. Woodhead Publishing.
[9] Patil, A., Tambrallimath, V. & Hegde, A. (2014). Corrosion Behaviour of Sintered Austenitic Stainless Steel Composites. International Journal of Engineering Research & Technology. 3(12), 14-17.
[10] PN-EN 10088-1/2005(U).
[11] Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122.
[12] Głownia, J., Kalandyk, B. & Camargo, M. (2002). Wear resistance of high Cr-Ni alloys in iron ore slurry conditions. Inżynieria Materiałowa (Material Engineering). 5, 694-697.
[13] Tęcza, G. (2019). Selected wear resistant cast steels with Ti, Nb, V, W and Mo carbides. Katowice-Gliwice: Wydawnictwo Komisja Odlewnictwa PAN. (in Polish).
[14] Kalandyk, B., Starowicz, M., Kawalec, M. & Zapała, R. (2013). Influence of the cooling rate on the corrosion resistance of duplex cast steel. Metalurgija. 52(1), 75-78.
[15] Charchalis, A., Dyl, T., Rydz, D., Stradomski, G. (2018). The effect of burnishing process on the change of the duplex cast steel surface properties. Inżynieria Materiałowa. 6(226), 223-227.
[16] Dyja, D., Stradomski, Z., Kolan, C. & Stradomski, G. (2012). Eutectoid Decomposition of δ-Ferrite in Ferritic-Austenitic Duplex Cast Steel - Structural and Morphological Study. Materials Science Forum. 706-709, 2314-2319.
Go to article

Authors and Affiliations

Grzegorz Tęcza
ORCID: ORCID

Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on GX120Mn13 modification performed with the SiZr38 inoculant. The microstructure of Hadfield cast steel in as-cast condition was studied through optical microscopy before and after inoculant introduction into the liquid steel. After heat treatment, mechanical properties and wear resistance tests were conducted to analyse the influence of the inoculant. The wear rate was determined according to the Standard Test Method for Determination of Slurry Abrasivity (ASTM G-75). The results show that average grain diameter, area of eqiuaxed grains crystallization and secondary dendrite arm spacing were lower after inoculation. After inoculation, the ultimate tensile strength and proof strength were higher by 8% and 4% respectively, in comparison to the initial state. The results of abrasion wear tests show that the introduction of 0.02 wt. % of zirconium significantly improved wear resistance, which was 34% better in comparison to steel without zirconium.
Go to article

Bibliography

[1] Zambrano, O.A., Tressia, G. & Souza, R.M. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 104621. DOI: 10.1016/j.engfailanal.2020.104621
[2] Chen, C., Lv, B., Feng, X., Zhang, F. & Beladi, H. (2018). Strain hardening and nanocrystallization behaviors in Hadfield steel subjected to surface severe plastic deformation. Materials Science and Engineering: A. 729, 178-184. DOI: 10.1016/j.msea.2018.05.059.
[3] Fujikura, M. (1986). Récents développements au Japon d’aciers austénitiques au Mn destinés aux applications amagnétiques. Matériaux & Techniques. 74, 341-353. DOI: 10.1051/mattech/198674070341.
[4] Chen, C., Zhang, F.C., Wang, F., Liu, H. & Yu B.D. (2017). Efect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel. Materials Science & Engineering A. 679, 95-103. DOI: 10.1016/j.msea.2016.09.106.
[5] Pribulová, A., Babic, J. & Baricová, D. (2011) Influence of Hadfield´s steel chemical composition on its mechanical properties. Chem. Listy. 105, 430-432.
[6] Kasińska, J. (2020). The Morphology of Impact Fracture Surfaces in Manganese Cast Steel Modified by Rare Earth Elements. Archives of Foundry Engineering. 20, 89-94. DOI: 10.24425/afe.2020.131308.
[7] Guzman, Fernandes, P.E. & Arruda, Santos, L. (2020). Effect of titanium and nitrogen inoculation on the microstructure, mechanical properties and abrasive wear resistance of Hadfield Steels. REM - International Engineering Journal. 73(5), 77-83. https://doi.org/10.1590/0370-44672019730023.
[8] Vdovin, K.N., Feoktistov, N.A., Gorlenko, D.A. et al. (2019). Modification of High-Manganese Steel Castings with Titanium Carbonitride. Steel Transl. 3, 147-151. https://doi.org/10.3103/S0967091219030136.
[9] Gürol, U., Karadeniz, E., Çoban, O., & Kurnaz, S.C. (2021). Casting properties of ASTM A128 Gr. E1 steel modified with Mn-alloying and titanium ladle treatment. China Foundry. 18, 199-206. https://doi.org/10.1007/s41230-021-1002-1
[10] Haakonsen, F., Solberg, J.K., Klevan, O. & Van der Eijk, C. (2011). Grain refinement of austenitic manganese steels. In AISTech - Iron and Steel Technology Conference Proceedings, 5-6 May 2011. Volume 2, 763-771, Indianapolis, USA. ISBN: 978-1-935117-19-3
[11] El-Fawkhry, M.K., Fathy, A.M., Eissa, M. & El-Faramway H. (2014). Eliminating heat treatment of hadfield steel in stress abrasion wear applications. International Journal of Metalcasting. 8, 29-36. DOI: 10.1007/BF03355569.
[12] Issagulov, A.Z., Akhmetov, A.B., Naboko, Ye.P., Kusainova, G.D. & Kuszhanova, A.A. (2016). The research of modification process of steel Hadfield integrated alloy ferroalumisilicocalcium (Fe-Al-Si-Сa/FASC). Metalurgija. 55(3), 333-336.
[13] Zykova, A., Popova, N., Kalashnikov, M. & Kurzina, I. (2017). Fine structure and phase composition of Fe–14Mn–1.2C steel: influence of a modified mixture based on refractory metals. International Journal of Minerals, Metallurgy and Materials. 24(5), 523-529. DOI: 10.1007/s12613-017-1433-2.
[14] Bartlett, L.N. & Avila, B.R. (2016). Grain refinement in lightweight advanced high-strength steel castings. International Journal of Metalcasting. 10, 401-420, DOI: 10.1007/s40962-016-0048-0.

Go to article

Authors and Affiliations

S. Sobula
1
ORCID: ORCID
S. Kraiński
2

  1. AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
  2. PGO S.A. Pioma Odlewnia, Oddział w Piotrkowie Trybunalskim, ul. Romana Dmowskiego 38, 97-300 Piotrków Trybunalski, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of metallographic and tribological tests on GX120MnCr13 cast steel that was previously subjected to heat treatment (including solution treatment from 1100°C and isothermal holding at 250, 400, and 600°C for 100 hours). The temperatures of the isothermal holding process were selected in order to reflect the possible working conditions of the cast elements that can be made of this cast steel. Wear tests were carried out under dry friction conditions using the ball-on-disc method using a ZrO2 ball as a counter-sample. The tests were carried out with a load of 5 N. The influence of the long-term isothermal holding process on the microstructure of the tested cast steel was analysed by light and scanning microscopy; however, abrasion marks were also examined using a confocal microscope. Based on the tests conducted, it was found that in the microstructures of the sample after solution treatment and samples that were held in isothermal condition at 250 and 400°C, the grain boundary areas were enriched in Mn and Cr compared to the areas inside the grains. Pearlite appeared in the sample that was heated (or held in isothermal holding) at 600°C; its share reached 41.6%. The presence of pearlite in the austenitic matrix increased the hardness to 351.4 HV 10. The hardness of the remaining tested samples was within a range of 221.8–229.1 HV 10. Increasing the hardness of the tested cast steel directly resulted in a reduction in the degree of wear as well as the volume, area, and width of the abrasion marks. A microscopic analysis of the wear marks showed that the dominant process of the abrasive wear of the tested friction pair was the detachment and displacement of the tested material through the indentation as a result of the cyclical impact of the counter-sample.
Go to article

Bibliography

[1] Głownia, J. (2002). Alloy steel castings – application. Kraków: FotoBit. (in Polish).
[2] Maratray, F. (1995). High carbon manganese austenitic steels. Paris: International Manganese Institute.
[3] Krawczyk, J., Matusiewicz, P., Frocisz, Ł., Augustyn-Nadzieja, J., Parzycha, S. (2018). The wear mechanism of mill beaters for coal grinding made-up from high manganese cast. In the 73 WFC, 23-27 September 2018. Kraków, Poland.
[4] Zambrano, O.A., Tressia, G. & Souza, R.M. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 1-24. DOI: 10.1016/j.engfailanal.2020.104621.
[5] Wróbel, T., Bartocha, D., Jezierski, J.; Kalandyk, B., Sobula, S., Tęcza, G., Kostrzewa, K., Feliks, E. (2023). High-manganese alloy cast steel in applications for cast elements of railway infrastructure. In the Proceedings of XXIX International Scientific Conference of Polish, Czech and Slovak Foundrymen Współpraca / Spolupráca, 26-28 April 2023. Niepołomice, Poland.
[6] Machado, P.C., Pereira, J.I. & Sinatora, A. (2021). Subsurface microstructural dynamic recrystallization in multiscale abrasive wear. Wear. 486-487, 204111, 1-14. DOI: 10.1016/j.wear.2021.204111.
[7] Tressia, G., Penagos, J.J. & Sinatora, A. (2017). Effect of abrasive particle size on slurry abrasion resistance of austenitic and martensitic steels. Wear. 376-377, 63-69. DOI: 10.1016/j.wear.2017.01.073.
[8] Olawale, J.O., Ibitoye, S.A., Shittu, M.D. & Popoola, A.P.I. (2011). A study of premature failure of crusher jaws. Journal of Failure Analysis and Prevention. 11(6), 705-709. DOI: 10.1007/s11668-011-9511-7.
[9] Stradomski Z., Stachura S., Stradomski G. (2013). Fracture mechanisms in steel castings. Archives of Foundry Engineering. 13, 88-91. DOI: 10.2478/afe-2013-0066.
[10] Martin, M., Raposo, M., Prat, O., Giordana, M.F. & Malarria, J. (2017). Pearlite development in commercial Hadfield steel by means of isothermal reactions. Metallography, Microstructure, and Analysis. 6, 591-597.
[11] Martin, M., Raposo, M., Druker, A., Sobrero, C. & Malarria, J. (2016). Influence of pearlite formation on the ductility response of commercial Hadfield steel. Metallography, Microstructure, and Analysis. 5(6), 505-511. https://doi.org/10.1007/s13632-016-0316-7.
[12] Tęcza, G. & Sobula, S. (2014). Effect of heat treatment on change microstructure of cast high-manganese Hadfield steel with elevated chromium content. Archives of Foundry Engineering. 14, 67-70.
[13] Krawczyk, J., Bembenek, M. & Pawlik, J. (2021). The role of chemical composition of high-manganese cast steels on wear of excavating chain in railway shoulder bed ballast cleaning machine. Materials. 16, 1-16. DOI: 10.3390/ma14247794.
[14] Fedorko, G., Molnár, V., Pribulová, A., Futaš, P., Baricová, D. (2011). The influence of Ni and Cr-content on mechanical properties of Hadfield ́s steel. In the 20th Anniversary International Conference on Metallurgy and Materials – Metal, May 2011 (pp. 18-20). Brno, Czech Republic.
[15] Najafabadi, V., Amini, K. & Alamdarlo, M. (2014). Investigating the effect of titanium addition on the wear resistance of Hadfield steel. Metallurgical Research and Technology. 111(6), 375-382. DOI: 10.1051/metal/2014044.
[16] Tęcza, G. & Garbacz-Klempka, A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering. 16(4), 163-168. DOI: 10.1515/afe-2016-0103.
[17] Kalandyk, B., Tęcza, G., Zapała, R. & Sobula S. (2015). Cast high-manganese steel – the effect of microstructure on abrasive wear behaviour in Miller test. Archives of Foundry Engineering. 15, 35-38. DOI: 10.1515/afe-2015-0033.
[18] Shan, Q., Ge, R., Li Z., Zhou, Z., Jiang ,Y., Lee, Y.-S. & Wu, H. (2021). Wear properties of high-manganese steel strengthened with nano-sized V2C precipitates. Wear. 482-483, 203922, 1-10. DOI: 10.1016/j.wear.2021.203922.
[19] Ayadi, S. & Hadji, A. (2021). Effect of chemical composition and heat treatments on the microstructure and wear behavior of manganese steel. International Journal of Metalcasting. 15(2), 510-519. DOI: 10.1007/s40962-020-00479-2.
[20] Gürol, U. & Can Kurnaz, S. (2020). Effect of carbon and manganese content on the microstructure and mechanical properties of high manganese austenitic steel. Journal of Mining and Metallurgy Section B - Metallurgy. 56, 171-182. DOI: 10.2298/JMMB191111009G.
[21] Kalandyk, B., Zapała, R., Kasińska, J. & Madej, M. (2021) Evaluation of microstructure and tribological properties of GX120Mn13 and GX120MnCr18-2 cast steels. Archives of Foundry Engineering. 21(3), 67-76. DOI: 10.24425/afe.2021.138681.
[22] Atabaki, M.M., Lafaril, S. & Abdollah-Pour, H. (2012) Abrasive wear behavior of high chromium cast iron and Hadfield steel-A comparison. Journal of Iron and Steel Research, International. 19, 43-50. DOI: 10.1016/S1006-706X(12)60086-7.
[23] Gierek, A. (2005). Zużycie tribologiczne. Gliwice: Wyd. Politechniki Śląskiej.
[24] Kalandyk, B., Zapała, R., Madej, M., Kasińska, J. & Piotrowska, K. (2022). Influence of pre-hardened GX120Mn13 cast steel on the tribological properties under technically dry friction. Tribologia. 3, 17-24. DOI: 10.5604/01.3001.0016.1020.
[25] El-Fawkhry, M.K., Fathy, A.M., Eissa, M.M. & El-Faramway, H. (2014). Eliminating heat treatment of Hadfield steel in stress abrasion wear applications, International Journal of Metalcasting. 8, 29-36. DOI: 10.1007/BF03355569.
[26] Cybo, J., Jura, S. (1995). Functional description of isometric structures in quantitative metallography. Functional description of isometric structures in quantitative metallography. Gliwice: Wyd. Politechniki Śląskiej. (in Polish).
[27] Standard EN 10349: 2009. Cast steel castings - Castings made of manganese austenitic cast steel. (in Polish).
[28] Standards PN-EN ISO 6507-1: 2007. Metallic materials - Vickers hardness test.
[29] Standards ISO 20808: 2016. Fine ceramics (advanced ceramics, advanced technical ceramics) - Determination of friction and wear characteristics of monolithic ceramics by ball-on-disc method. [30] Mishra, S. & Dalai R. (2021). A comparative study on the different heat-treatment techniques applied to high manganese steel. Materials Today: Proceedings. 44(1), 2517-2520. DOI: 10.1016/j.matpr.2020.12.602.
[31] Kawalec, M. & Fraś, E. (2009). Effect of silicon on the structure and mechanical properties of high-vanadium cast iron. Archives of Foundry Engineering. 9(3), 231-234.
[32] Dziubek, M., Rutkowska-Gorczyca, M., Dudziński, W. & Grygier, D. (2022). Investigation into changes of microstructure and abrasive wear resistance occurring in high manganese steel X120Mn12 during isothermal annealing and re-austenitisation process. Materials. 15(7), 2622. DOI: 10.3390/ma15072622.
[33] El Fawkhry M. K. (2021). Modified Hadfield steel for castings of high and low gouging applications. International Journal of Metalcasting. 15(4), 613-624. DOI: 10.1007/s40962-020-00492-5.
[34] Lindroos, M., Apostol, M., Heino, V., Valtonen, K., Laukkanen, A., Holmberg, K. & Kuokkala, V.T. (2015). The deformation, strain hardening, and wear behavior of chromium-alloyed Hadfield steel in abrasive and impact conditions. Tribology Letters. 57, 1-11. DOI: 10.1007/s11249-015-0477-6.
[35] Luo, Q. & Zhu, J. (2022). Wear property and wear mechanisms of high-manganese austenitic Hadfield steel in dry reciprocal sliding. Lubricants. 10(3), 1-18. DOI: /10.3390/lubricants10030037.
Go to article

Authors and Affiliations

Barbara Kalandyk
1
ORCID: ORCID
Renata E. Zapała
1
ORCID: ORCID
Iwona Sulima
2
ORCID: ORCID
Piotr Furmańczyk
3
ORCID: ORCID
Justyna Kasińska
3
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Foundry Engineering, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  2. University of the National Education Commission Krakow, Institute of Technology, ul. Podchorążych 2, 32-084 Krakow, Poland
  3. Kielce University of Technology, Faculty of Mechatronics and Mechanical Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of microstructure examinations and hardness measurements carried out on two selected grades of high-manganese cast steel with an austenitic matrix, i.e. GX120Mn13 and GX120MnCr18-2, are presented. The examinations of the cast steel microstructure have revealed that the matrix of the GX120MnCr18-2 cast steel contains the precipitates of complex carbides enriched in Cr and Mn with two different morphologies. The presence of these precipitates leads to an increase in hardness by approx. 30 HB compared to the GX120Mn13 cast steel. Samples cut out from the tested materials were loaded (10 strokes) with an energy of 53 J, and then a ball-on-disc tribological test was performed. The test was carried out in reciprocating motion under technically dry friction conditions. While analyzing the obtained results of the microstructure, hardness, and abrasion tests, it was found that the presence of the hard carbide precipitates in the plastic matrix of the tested GX120MnCr18-2 cast steel promoted an increase in hardness, but also led to chipping of these particles from the alloy matrix, thus contributing to micro-cutting during friction.
Go to article

Bibliography

[1] Standard PN-EN 10349: 2009. Steel castings - Austenitic manganese steel castings.
[2] Banerjee, M.K. (2017). Heat Treatment of Commercial Steels for Engineering Applications. Comprehensive Materials Finishing. 2, 180-213.
[3] Dobrzański, L.A. (2002). Fundamentals of materials science and metal science. Warszawa: Wyd. Naukowo-Techniczne. ISBN: 83-204-2793-2. (in Polish).
[4] Baza materiałowa. Total materia. (June 2021). Retrieved August 13, 2021, from https://portal-1totalmateria1com 1000022kc0110.wbg2.bg.agh.edu.pl/search/quick/materials/1040932/material-description.
[5] Fedorko, G., Molnár, V., Pribulová, A., Futaš, P., Baricová, D. (2011). The influence of Ni and Cr-content on mechanical properties of Hadfield ́s steel. In 20th Anniversary International Conference on Metallurgy and Materials. Metal 2011, 18-20.05.2011 (pp.1-6). Brno, Czech Republic.
[6] Dastur, Y.N. & Leslie, W.C. (1981). Mechanism of work hardening in Hadfield manganese steel. Metallurgical Transactions A. 12A, 749-759.
[7] Austenitic Manganese Steels. (June 2021). Retrieved August 13, 2021, from http://www.keytometals.com/Articles/Art69.htm.
[8] Stradomski, Z. (2010). The role of microstructure in the wear behaviour of abrasion-resistant cast steels. Częstochowa: Wyd. Politechniki Częstochowskiej. ISBN: 978-83-7193-468-1. (in Polish).
[9] Kniaginin, G. (1977). Cast steel. Metallurgy and founding. Katowice: Wyd. Śląsk. (in Polish).
[10] Varela, L.B., Tressia, G., Masoumi, M., Bortoleto, E.M., Regattieri, C. & Sinatora, A. (2021). Roller crushers in iron mining, how does the degradation of Hadfield steel components occur. Engineering Failure Analysis. 122, 1-18.
[11] Głownia, J. (2002). Alloy steel castings – applications. Kraków: Wyd. FotoBit. ISBN: 83-917129-1-5. (in Polish).
[12] Kosturek, R., Maranda, A., Senderowski, C. & Zasada, D. (2016). Research into the application of explosive welding of metal sheets with Hadfield’s steel (Mangalloy). High-Energetic Materials. 8, 91-102.
[13] White, C.H. & Honeycombe, R.W.K. (1962). Structural changes during the deformation of high purity iron-manganese-carbon alloys. Journal Iron and Steel Institute. 200, 457-466.
[14] Subramanyam, D.K., Swansiger, A.E., Avery, H.S. (1990). Austenitic manganese steels ASM Metals Handbook 1. Properties and Selections: Irons, Steels and High - Performance Alloys. (pp. 822-840). ASM International. ISBN: 978-1-62708-161-0.
[15] Quan Shan, Ru Ge, Zulai Li, Zaifeng Zhou, Yehua Jiang, Yun-Soo Lee, & Hong Wu. (2021). Wear properties of high-manganese steel strengthened with nano-sized V2C precipitates. Wear. 482-483, 203922.
[16] Jia-li Cao, Ai-min Zhao, Ji-xiong Liu, Jian-guo He, & Ran Ding. (2014). Effect of Nb on microstructure and mechanical properties in non-magnetic high manganese steel. Journal of Iron and Steel Research International. 21(6), 600-605.
[17] Atasoy, O.A., Ozbaysal, K. & Inal, O.T. (1989). Precipitation of vanadium carbides in 0.8% C-13% Mn-1% V austenitic steel. Journal of Materials Science. 24, 1393-1398.
[18] Iglesiasa, C., Solórzanob, G. & Schulza, B. (2009). Effect of low nitrogen content on work hardening and microstructural evolution in Hadfield steel. Materials Characterization. 60(9), 971- 979.
[19] Mahlami, C.S., Pan, X. (2017). Mechanical properties and microstructure evaluation of high manganese steel alloyed with vanadium. Retrieved August 10, 2021, from https://doi.org/10.1063/1.4990236
[20] Delgado, F., Rodríguez, S.A., Coronado, J.J. (2019). Effect of chemical composition and shot peening treatment on Hadfield steel swing hammers exposed to impact wear. International Tribology Council The 10th International Conference BALTTRIB'2019, 14–16 November 2019, (pp. 87-93). Kaunas, Lithuania: Vytautas Magnus University Agriculture Academy.
[21] Sant, S.B., & Smith, R.W. (1987). A study in the work-hardening behaviour of austenitic manganese steels. Journal of Materials Science. 22, 1808-1814.
[22] Adler, P.H., Olson, G.B. & Owen, W.S. (1986). Strain hardening of Hadfield manganese steel. Metallurgical Transactions A. 17a, 1725-1737.
[23] Malkiewicz, T. (1978). Metallurgy of iron alloys. Warszawa: Wyd. PWN. (in Polish).
[24] Ashok Kumar Srivastava, Karabi Das. (2008). Microstructural characterization of Hadfield austenitic manganese steel. Journal of Materials Science. 43(16), 5654-5658.
[25] Bolanowski, K. (2013). The influence of the hardness of the surface layer on the abrasion resistance of Hadfield steel. Problemy Eksploatacji. 1, 127-139.

Go to article

Authors and Affiliations

Barbara Kalandyk
ORCID: ORCID
R. Zapała
1
ORCID: ORCID
Justyna Kasińska
ORCID: ORCID
M. Madej
2

  1. AGH University of Science and Technology, Department of Cast Alloys and Composite Engineering, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Krakow, Poland
  2. Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The effect of vanadium microaddition on the strength of low-carbon cast steel containing 0.19% C used, among others, for castings of slag ladles was discussed. The tested cast steel was melted under laboratory conditions in a 30 kg capacity induction furnace. Mechanical tests were carried out at 700, 800 and 900°C using an Instron 5566 machine equipped with a heating oven of  2C stability. Non-standard 8- fold samples with a measuring length of 26 mm and a diameter of 3 mm were used for the tests. It has been shown that, compared to cast steel without vanadium microaddition, the introduction of vanadium in an amount of 0.12% to unalloyed, low carbon cast steel had a beneficial effect on the microstructure and properties of this steel not only at ambient temperature but also at elevated temperatures when it promoted an increase in UTS and YS. The highest strength values were obtained in the tested cast steel at 700C with UTS and YS reaching the values of 193 MPa and 187.7 MPa, respectively, against 125 MPa and 82.8 MPa, respectively, obtained without the addition of vanadium. It was also found that with increasing test temperature, the values of UTS and YS were decreasing. The lowest values of UTS and YS obtained at 900°C were 72 MPa and 59.5 MPa, respectively, against 69 MPa and 32.5 MPa, respectively, obtained without the addition of vanadium.

Go to article

Authors and Affiliations

B.E. Kalandyk
Renata E. Zapała
ORCID: ORCID
P. Pałka
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study of the hybrid electro-discharge mechanical machining BEDMM (Brush Electro-Discharge Mechanical Machining) with the application of a rotary disk brush as a working electrode. The discussed method enables not only an effective machining with a material removal rate of up to 300 mm3/min but also finishing (with the obtained roughness of Ra < 0.5 μm) of the surfaces of complex-shaped alloys with poor machinability. The analysis of the factors involved in the machining process indicates that its efficiency is determined by electrodischarge. The use of flexible working electrodes makes it possible to apply simple technological instrumentation and results in the simplicity of the process automation. The aim of the study was to obtain quantitative relationships between the parameters of brush electro discharge mechanical machining (BEDMM) and its effects. The presented experimental research results define the effect of the process input parameters on the performance and roughness of machined surfaces obtained for manganese cast steel.

Go to article

Authors and Affiliations

P.S. Młynarczyk
S. Spadło
Download PDF Download RIS Download Bibtex

Abstract

The morphology of G20Mn5 specimens made of non-modified and rare earth metals (REM) modified cast steel was investigated. Molten metal was treated with a cerium-rich mischmetal contain 49.8% Ce, 21.8% La, 17.1% Nd, 5.5% Pr and 5.35% other rare earth metals making up the balance. The melting, quenching (920°C/water) and tempering (720°C/air) were performed under industrial conditions. Analysis included G20Mn5 cast steel fracture specimens subjected to Charpy V-notch impact testing at 20°C, -30°C and -40°C. The purpose of the analysis was to determine the influence of REM on the microstructure and mechanical properties of G20Mn5 cast steel and the REM effect on the morphology, impact strength and character of the fracture surfaces. In addition, a description of the mechanism by which fracture occurred in the two materials was proposed. The author demonstrated the beneficial effects of adding REM to molten steel, manifested by a 20 - 40% increase in impact toughness, depending on test temperature, as compared to the non-modified cast steel. Important findings included more than 100% increase in impact strength in comparison with the required impact toughness of 27J at -40C for heat treated steels (EN 10213).

Go to article

Authors and Affiliations

Justyna Kasińska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research conducted in the field of crystallization and microstructure of duplex alloy cast steel GX2CrNiMoCuN 25-6-3-3 grade. The material for research was the above-mentioned cast steel with a chemical composition compliant with the relevant PN-EN 10283 standard, but melted at the lowest standard allowable concentration of alloying additives (some in short supply and expensive), i.e. Cr, Ni, Mn, Mo, Cu and N. The analysis of the crystallization process was performed based on the DTA (Derivative Thermal Analysis) method for a stepped casting with a thickness of individual steps of 10, 20, 40 and 60 mm. The influence of wall thickness was also taken into account in the cast steel microstructure testing, both in the as-cast state and after solution heat treatment. The phase composition of the cast steel microstructure was determined by using an optical microscope and X-ray phase analysis. The analysis of test results shows that the crystallization of tested cast steel uses the ferritic mechanism, while austenite is formed as a result of solid state transformation. The cast steel under analysis in the as-cast state tends to precipitate the undesirable σ-type Fe-Cr intermetallic phase in the microstructure, regardless of its wall thickness. However, the casting wall thickness in the as-cast state affects the austenite grain size, i.e. the thicker the casting wall, the wider the γ phase grains. The above-mentioned defects of the tested duplex alloy cast steel microstructure can be effectively eliminated by subjecting it to heat treatment of type hyperquenching.
Go to article

Bibliography

[1] Chojecki, A., Telejko, I. (2003). The foundry engineering of cast steel. Kraków: Akapit. (in Polish).
[2] Perzyk, M., Waszkiewicz, S., Kaczorowski, M., Jopkiewicz, A. (2004). Foundry engineering. Warszawa: WNT. (in Polish).
[3] Gunn, R. (1997). Duplex stainless steels - microstructure, properties and applications. Cambridge: Woodhead Publishing.
[4] Stradomski, G. (2016). Influence of the sigma phase morphology on shaping the properties of steel and duplex cast steel. Częstochowa: Publishers of Czestochowa University of Technology. (in Polish).
[5] Voronenko, B. (1997). Austenitic-ferritic stainless steels: A state-of-the-art review. Metal Science and Heat Treatment. 39(10), 428-437. https://doi.org/10.1007/BF02484228.
[6] Kalandyk, B. (2011). Characteristics of microstructure and properties of castings made from ferritic-austenitic steel. Katowice – Gliwice: AFE. (in Polish).
[7] Stradomski, G. (2017). The analysis of AISI A3 type ferritic-austenitic cast steel crystallization mechanism. Archives of Foundry Engineering. 17(3), 229-233. https://doi.org/10.1515/afe-2017-0120.
[8] Šenberger, J., Pernica, V., Kaňa, V. & Záděra, A. (2018). Prediction of ferrite content in austenitic Cr-Ni steel castings during production. Archives of Foundry Engineering. 18(3), 91-94. https://doi.org/10.24425/123608.
[9] Kaňa, V., Pernica, V., Záděra, A. & Krutiš, V. (2019). Comparison of methods for determining the ferrite content in duplex cast steels. Archives of Foundry Engineering. 19(2), 85-90. https://doi.org/10.24425/afe.2019.127121.
[10] Yamamoto, R., Yakuwa, H., Miyasaka, M. & Hara, N. (2019). Effects of the α/γ-phase ratio on the corrosion behavior of cast duplex stainless steel. Corrosion. 76(9), 815-825. https://doi.org/10.5006/3464.
[11] Jurczyk, P., Wróbel, T. & Baron, C. (2021). The influence of hyperquenching temperature on microstructure and mechanical properties of alloy cast steel GX2CrNiMoCuN 25-6-3-3. Archives of Metallurgy and Materials. 66(1), 73-80. https://doi.org/10.24425/amm.2021.134761.
[12] Kalandyk, B., Zapała, R. & Pałka, P. (2022). Effect of isothermal holding at 750 °C and 900 °C on microstructure and properties of cast duplex stainless steel containing 24% Cr-5% Ni-2.5% Mo-2.5% Cu. Materials. 15(23), 1-17. https://doi.org/10.3390/ma15238569.
[13] Wróbel, T., Jurczyk, P., Baron, C. & Jezierski, J. (2023). Search for the optimal soaking temperature for hyperquenching of the GX2CrNiMoCuN 25-6-3-3 duplex cast steel. International Journal of Metalcasting. https://doi.org/10.1007/s40962-023-01020-x. (in print).
[14] Głownia, J. & Banaś, J. (1997). Effect of modification and segregation on the delta-ferrite morphology and corrosion resistance of cast duplex steel. Metallurgy and Foundry Engineering. 23(2), 261-267.

Go to article

Authors and Affiliations

T. Wróbel
1
ORCID: ORCID
P. Jurczyk
1
ORCID: ORCID
C. Baron
1
ORCID: ORCID
P. Nuckowski
2
ORCID: ORCID

  1. Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland
  2. Silesian University of Technology, Materials Research Laboratory, Konarskiego 18a, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of tests and examinations of the microstructure and mechanical properties of cast steel used for large-size slag ladles are presented. Castings of this type (especially large-size ladles with a capacity of up to 16 m3) operate under very demanding conditions resulting from the repeated cycles of filling and emptying the ladle with liquid slag at a temperature exceeding even 1600°C. The changes in operating temperature cause faster degradation and wear of slag ladle castings, mainly due to thermal fatigue.
The tests carried out on samples taken from different parts/areas of the ladle (flange, bottom and half-height) showed significant differences in the microstructure of the flange and bottom part as compared to the microstructure obtained at half-height of the ladle wall. The flange and bottom were characterized by a ferritic-pearlitic microstructure, while the microstructure at the ladle half-height consisted of a ferritic matrix, cementite and graphite precipitates. Changes in microstructure affected the mechanical properties. Based on the test results it was found that both the flange and the bottom of the ladle had higher mechanical properties, i.e. UTS, YS, hardness, and impact energy than the centre of the ladle wall. Fractography showed the mixed character of fractures with the predominance of brittle fracture. Microporosity and clusters of non-metallic inclusions were also found in the fractures of samples characterized by low properties.
Go to article

Authors and Affiliations

Barbara Kalandyk
ORCID: ORCID
R. Zapała
1
ORCID: ORCID
S. Sobula
1
ORCID: ORCID
Grzegorz Tęcza
ORCID: ORCID
K. Piotrowski
2
ORCID: ORCID

  1. AGH University of Science and Technology, Department of Cast Alloys and Composite Engineering, Faculty of Foundry Engineering, 23 Reymonta Str., 30-059 Krakow, Poland
  2. Krakodlew S.A., 1 Ujastek Str., 30-969 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper a plastic deformation and a damage evolution in low-carbon cast steel containing non-metallic inclusions are analysed experimentally and numerically. Two microstructures of the cast steel have been obtained after appropriate heat treatment. Tensile tests of smooth specimens and axisymmetric notched specimens have been performed. The notched specimens have the notch radii: 1 mm, 3 mm and 7 mm. Fractography of the specimens was carried out to observe fracture mechanisms. The mechanism depended on the stress state in the notched specimens. The fractography showed the existence of two fracture mechanisms: ductile failure and by shear.
The process of the voids growth formed on the non-metallic inclusions was the process which included in the explanation of the damage mechanism. Modelling of deformation of the specimens has been used with the model suggested by Gurson, Tvergaard and Needleman. The model is implemented in the Abaqus finite element program. The computer simulation was performed using ABAQUS system. The computed output was compared with the experimental results obtained for specimens of the same shape.
Go to article

Bibliography

[1] Lachowski, J. & Biel-Gołaska M. (2000). Modelling of Damage Evolution in Cast Steel, Conference Advances in Mechanical Behaviour, Plasticity and Damage EUROMAT 2000, 7-9 November, pp. 1457-1462, Tours, France.
[2] Gurson, A.L. (1977). Continuum theory of ductile rupture by void nucleation and growth. J ournal of Engineering Materials Technology. 99, 2-15.
[3] Tvergaard, V. & Needleman, A. (1984). Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica. 32(1), 157-169.
[4] Needleman, A. & Tvergaard, V. (1984). An analysis of ductile rupture in notched bars. J ournal of Mechanics and Physics of Solids. 32(6), 461-490.
[5] Bridgman, P.W. (1952). Studies in Large Plastic Flow and Fracture. Harvard University Press, Cambridge, Massachusetts, Chapter 1.
[6] Biel-Gołaska, M. & Gołaski, L. (1994). The analysis of the ductile failure process of cast steel subjected to triaxial stress states, Foundry Reaserch Institute, Cracow, XLIV, No 1-2, pp. 37-57.
[7] Borowiecka-Jamrozek, J., Lachowski, J. (2014). An analysis of stresses in an Al-5%Si alloy under load, Conference "Recent Trends in Structural Materials", COMAT 2014, Nov. 19-21, pp. 6. Pilzen, Czech Republic.
[8] Koplik, J. & Needleman, A. (1988). Void coalescence in porous plastic solids. International Journal of Solids Structures. 24(8), 835-853.
[9] Richelsen, A.B. & Tvergaard, V. (1994). Dilatant plasticity or upper bound estimates for porous ductile solids. Acta metall materialia. 42(8), 2561-2577.
[10] Tvergaard V. (2001). Crack growth predictions by cohesive zone model for ductile fracture. Journal of Mechanics and Physics of Solids. 49, 2191-2207.
[11] SIMULIA Dassault System, Abaqus analysis user’s manual, Version 6.12 , 2017.
Go to article

Authors and Affiliations

J. Lachowski
1
J. Borowiecka-Jamrozek
1

  1. Kielce University of Technology, Al. Tysiąclecia PP. 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the research results concerning the chromium-nickel-molybdenum duplex cast steel GX2CrNiMoCuN 25-6-3-3 grade. The aim of studies was the description of the influence of hyperquenching temperature Tp i.e. 1100, 1125 and 1150℃ on microstructure and mainly mechanical properties i.e. tensile strength UTS, yield strength YS, hardness HB, elongation EL and impact energy KV of duplex cast steel GX2CrNiMoCuN 25-6-3-3 grade. The range of studies included ten melts which were conducted in foundry GZUT S.A. Based on the obtained results was confirmed that application of hyperquenching process guarantees the elimination of brittle s phase in the microstructure of studied duplex cast steel. Moreover on the basis of conducted statistical analysis of the researches results is concluded that with the decrease in hyperquenching temperature increases ductility and amount of austenite, while decreases strength and amount of ferrite in studied duplex cast steel GX2CrNiMoCuN 25-6-3-3 grade.

Go to article

Authors and Affiliations

P. Jurczyk
ORCID: ORCID
T. Wróbel
ORCID: ORCID
Cz. Baron
Download PDF Download RIS Download Bibtex

Abstract

This work deals with the effect of austempering temperature and time on the microstructure and content of retained austenite of a selected cast steel assigned as a material used for frogs in railway crossovers. Bainitic cast steel was austempered at 400°C, 450°C and 500°C for two selected times (0.5 h, 4.0 h) to study the evolution of the microstructure and retained austenite content. The microstructure was characterized by optical microscopy, X-ray diffraction analyses (XRD), and hardness tests. Phase transformations during and after austempering were determined by dilatometric methods.

The increase in isothermal temperature causes an increase in time to start of bainitic transformation from 0.25 to 1.5 s. However, another increase in temperature to 500°C shifts the incubation time to as much as 11 s. The time after which the transformations have ended at individual temperatures is similar and equal to about 300 s (6 min.). The dilatation effects are directly related to the amount of bainite formation. Based on these we can conclude that the temperature effect in the case of cast steel is inversely proportional to the amount of bainite formed. The largest effect can be distinguished in the case of the sample austempered at 400°C and the smallest at 500°C. Summarizing the dilatometric results, we can conclude that an increase in austempering temperature causes an increase in austenite stability. In other words, the chemical composition lowers (shifts to lower temperatures) the range of bainite transformation. It is possible that at higher austempering temperatures we will receive only stable austenite without any transformation. This is indicated by the hatched area in Figure 4b. This means that the heat treatment of cast steel into bainite is limited on both sides by martensitic transformation and the range of stable austenite. The paper attempts to estimate the content of retained austenite with X-ray diffraction.

Go to article

Authors and Affiliations

S. Parzych
R. Dziurka
ORCID: ORCID
M. Goły
B. Kulinowski
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of research into the characteristics of cast steel alloyed with chromium and vanadium, subjected to heat treatment for increased strength parameters. In the first part, it discusses the state-of-the-art knowledge regarding technological developments in the field of cast-steel alloys and the influence of individual alloying additives on the microstructure and the properties of the steel alloy. Further sections present the results of microstructure observations performed with light microscopy, scanning electron microscopy, and transmission electron microscopy. This research focuses on the material in the state directly after casting and after heat treatment, which involved quenching and tempering at 200 °C. The microstructural analysis performed as part of this research has informed the discussion of the results obtained from tensile and impact strength tests. The article also includes the results of a fractography analysis performed as the final part of the tests and offers a general summary and conclusions.
Go to article

Bibliography

[1] Bartocha, D., Kilarski, J., Suchoń, J., Baron, C., Szajnar, J. & Janerka, K. (2011). Low-alloy constructional cast steel. Archives of Foundry Engineering. 11(spec.3), 265-271. ISSN (1897-3310). (in Polish).
[2] Skołek, E., Szwejkowska, K., Chmielarz, K., Świątnicki, W. A., Myszka, D. & Wieczorek, A.N. (2022). The microstructure of cast steel subjected to austempering and B-Q&P heat treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 53(7), 2544-2560. https://doi.org/10.1007/s11661-022-06685-3.
[3] Kniaginin, G. (1977). Cast steel: Metallurgy and foundry. Katowice: Wydawnictwo “Śląsk”. (in Polish).
[4] Sobula, S., Tęcza, G., Krasa, O. & Wajda, W. (2013). Grain refinement of low alloy Cr-Mn-Si-Ni-Mo cast steel with boron, titanium and rare elements additions. Archives of Foundry Engineering. 13(3) 153-156. ISSN (1897-3310). (in Polish).
[5] Gajewski, M. & Kasińska, J. (2012). Effects of Cr - Ni 18/9 austenitic cast steel modification by mischmetal. Archives of Foundry Engineering. 12(spec.4), 47-52. DOI: 10.2478/v10266-012-0105-y.
[6] Lazarova, R., Petrov, R.H., Gaydarova, V., Davidkov, A., Alexeev, A., Manchev, M. & Manolov, V. (2011). Microstructure and mechanical properties of P265GH cast steel after modification with TiCN particles. Materials & Design. 32(5), 2734-2741. DOI: 10.1016/J.MATDES.2011.01.024.
[7] Yang, S.Z. (2010). Vanadium Metallurgy. Beijing: Metallurgical Industry Press.
[8] Dobrzański, L.A. (2002). Fundamentals of materials science and metal science. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[9] Baoxiang, Y., Jinyong, H., Guifang, Z. & Jike, G. (2021). Applications of vanadium in the steel industry. Vanadium. 267-332. DOI: 10.1016/B978-0-12-818898-9.00011-5.
[10] Panin, S.V., Maruschak, P.O., Vlasov, I.V., Syromyatnikova, A.S., Bolshakov, A.M., Berto, F., Prentkovskis, O. & Ovechkin, B.B. (2017). Effect of operating degradation in arctic conditions on physical and mechanical properties of 09Mn2Si pipeline steel. Procedia Engineering. 178, 597-603. https://doi.org/10.1016/j.proeng.2017.01.117.
[11] Wyrzykowski, J.W., Pleszakow, E. & Sieniawski, J. (1999). Deformation and cracking of metals. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[12] Kocańda, S. (1972). Fatigue destruction of metals. Warszawa: Wydawnictwo: Naukowo-Techniczne. (in Polish).
[13] Maciejny, A. (1973). Brittleness of metals. Katowice: Wydawnictwo “Śląsk”. (in Polish).
[14] Kalandyk, B. & Zapała, R. (2008). Effect of heat treatment parameters on the properties of low-alloy cast steel with microadditions of vanadium. Archives of Foundry Engineering. 8(3), 137-140. ISSN(1897-3310).
[15] Kalandyk, B., Sierant, Z. & Sobula, S. (2009). Optimisation of microstructure, yield and impact strength of carbon cast steel by vanadium additions. Przegląd Odlewnictwa. 59(3), 108-113. (in Polish).
[16] Kalandyk, B. & Głownia, J. (2003). Influence of V and Mo and heat treatment of constructional Mn–Ni cast steels acquirement of yield strength above 850MPa. Archiwum Odlewnictwa. 3(8), 69-74. (in Polish). ISSN 1642-5308.
[17] Szajnar, J., Studnicki, A., Głownia, J., Kondracki, M., Suchoń, J. & Wróbel, T. (2013). Technological aspects of low-alloyed cast steel massive casting manufacturing. Archives of Foundry Engineering. 13(4), 97-102. ISSN (1897-3310).
[18] Sobula, S., Rąpała, M., Tęcza, G., & Głownia, J. (2009). Cast steels of a yield strength above 1300 MPa comparable to forgings. Przegląd Odlewnictwa. 59(3), 102-106. (in Polish).

Go to article

Authors and Affiliations

B. Białobrzeska
1
ORCID: ORCID

  1. Wrocław University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper, which is a summary and supplement of previous works and research, presents the results of numerical and physical modeling of the GX2CrNiMoCuN25-6-3 duplex cast steel thin-walled castings production. To obtain thin-walled castings with wall in the thinnest place even below 1 mm was used the centrifugal casting technology and gravity casting. The analyzed technology (centrifugal casting) enables making elements with high surface quality with reduced consumption of batch materials and, as a result, reducing the costs of making a unitary casting. The idea behind the production of cast steel with the use of centrifugal technology was to find a remedy for the problems associated with unsatisfactory castability of the tested alloy.

The technological evaluation of the cast construction was carried out using the Nova Flow & Solid CV 4.3r8 software. Numerical simulations of crystallization and cooling were carried out for a casting without a gating system and sinkhead located in a mold in accordance with the pouring position. It was assumed that the analyzed cast will be made in the sand form with dimensions 250×250×120 mm.

Go to article

Authors and Affiliations

G. Stradomski
M. Nadolski
ORCID: ORCID
A. Zyska
B. Kania
D. Rydz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The article was created as a result of the work TECHMATSTRATEG 1 program “Modern Material Technologies” as part of the project with the acronym INNOBIOLAS entitled “Development of innovative working elements of machines in the forestry sector and biomass processing based on high-energy surface modification technologies of the surface layer of cast elements”; agreement No. TECHMATSTRATEG1/348072/2/NCBR/2017.
The article discusses the procedure for selecting casting materials that can meet the high operational requirements of working tools of mulching machines: transfer of high static and dynamic loads, resistance to tribological wear, corrosion resistance in various environments. The mulching process was briefly described, then the alloys were selected for experimental tests, model alloys were made and perform material tests were carried out in terms of functional and technological properties. The obtained results allowed to select the alloy where the test castings were made.
Go to article

Authors and Affiliations

Z. Pirowski
1
ORCID: ORCID
A. Bitka
1
ORCID: ORCID
M. Grudzień-Rakoczy
1
ORCID: ORCID
M. Małysza
1
ORCID: ORCID
S. Pysz
1
ORCID: ORCID
P. Wieliczko
1
ORCID: ORCID
D. Wilk-Kołodziejczyk
1 2
ORCID: ORCID

  1. Center of Casting Technology, Łukasiewicz Research Network – Krakow Institute of Technology Contribution, Poland
  2. AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30. 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article is a description of the progress of research and development in the area of massive large-scale castings - slag ladles implemented in cooperation with the Faculty of Foundry Engineering of UST in Krakow. Slag ladles are the one of the major castings that has been developed by the Krakodlew (massive castings foundry) for many years. Quality requirements are constantly increasing in relation to the slag ladles. Slag ladles are an integral tool in the logistics of enterprises in the metallurgical industry in the process of well-organized slag management and other by-products and input materials. The need to increase the volume of slag ladles is still growing. Metallurgical production is expected to be achieved in Poland by 2022 at the level of 9.4 million Mg/year for the baseline scenario - 2016 - 9 million Mg/year. This article describes the research work carried out to date in the field of technology for the production of massive slag ladles of ductile cast iron and cast steel.

Go to article

Authors and Affiliations

M. Paszkiewicz
Edward Guzik
ORCID: ORCID
D. Kopyciński
ORCID: ORCID
Barbara Kalandyk
ORCID: ORCID
A. Burbelko
ORCID: ORCID
D. Gurgul
S. Sobula
ORCID: ORCID
A. Ziółko
K. Piotrowski
ORCID: ORCID
P. Bednarczyk
Download PDF Download RIS Download Bibtex

Abstract

The austenitic stainless steels are a group of alloys normally used under high mechanical and thermal requests, in which high temperature oxidation is normally present due to oxygen presence. This study examines the oxide layer evolution for Fe24Cr12NiXNb modified austenitic stainless steel A297 HH with 0,09%Nb and 0,77%Nb content at 900°C under atmospheric air and isothermal oxidation. The modifiers elements such as Mo, Co and Ti, added to provide high mechanical strength, varied due to the casting procedure, however main elements such as Cr, Ni, Mn and Si were kept at balanced levels to avoid microstructure changing. The oxide layer analysis was performed by confocal laser scanning microscopy (CLS) and scanning electron microscopy (SEM). The elemental analysis of the different phases was measured with energy dispersive X-ray spectroscopy (EDX). The Nb-alloyed steel generated a thicker Cr oxide layer. Generally elemental Nb did not provide any noticeable difference in oxide scale growth, for the specific range of Nb amount and temperature studied. High temperature oxidation up to 120h was characterized by protective Cr oxidation, after this period a non-protective Fe-based oxidation took place. Cr, Fe and Ni oxides were observed in the multilayer oxide scale.
Go to article

Bibliography

[1] Abbasi, M., Park, I., Ro, Y., Ji, Y., Ayer, R. & Shim, J.H. (2019). G-phase formation in twenty-years aged heat-resistant cast austenitic steel reformer tube. Materials Characterization. 148, 297-306. DOI: 10.1016/j.matchar. 2019.01.003.
[2] Madern, N., Monnier, J., Baddour-Hadjean, R., Steckmeyer, A. & Joubert, J.M. (2018). Characterization of refractory steel oxidation at high temperature. Corrosion Science. 132, 223-233. DOI: 10.1016/j.corsci.2017.12.029.
[3] Kondrat’ev, S.Y., Kraposhin, V.S., Anastasiadi, G.P. & Talis, A.L. (2015). Experimental observation and crystallographic description of M7C3 carbide transformation in Fe-Cr-Ni-C HP type alloy. Acta Materialia. 100, 275-281. DOI: 10.1016/j.actamat.2015.08.056.
[4] Dewar, M.P. & Gerlich, A.P. (2013). Correlation between experimental and calculated phase fractions in aged 20Cr32Ni1Nb austenitic stainless steels containing nitrogen . Metallurgical and Materials Transactions A. 44, 627-639. DOI: 10.1007/s11661-012-1457-1.
[5] Pascal, C., Braccini, M., Parry, V., Fedorova, E., Mantel, M., Oquab, D. & Monceau, D. (2017). Relation between microstructure induced by oxidation and room-temperature mechanical properties of the thermally grown oxide scales on austenitic stainless steels. Materials Characterization. 127, 161-170. DOI: 10.1016/j.matchar.2017.03.003.
[6] Chen, H., Wang, H., Sun, Q., Long, C., Wei, T., Kim, S.H., Chen, J., Kim, C., & Jang, C. (2018). Oxidation behavior of Fe-20Cr-25Ni-Nb austenitic stainless steel in high-temperature environment with small amount of water vapor. Corrosion Science. 145, 90-99. DOI: 10.1016/j.corsci. 2018.09.016.
[7] Zhang, X., Li, D., Li, Y. & Lu, S. (2019). Effect of aging treatment on the microstructures and mechanical properties evolution of 25Cr-20Ni austenitic stainless steel weldments with different Nb contents. Journal of Materials Science & Technology. 35, 520-529. DOI: 10.1016/j.jmst.2018.10.017.
[8] Birks, N., Meier, G.H. & Pettit, F.S. (2006). Introduction to the high temperature oxidation of metals, Second edition. Cambridge University Press. DOI: 10.1017/ CBO9781139163903.
[9] Li, D.S., Dai, Q.X., Cheng, X.N., Wang, R.R. & Huang, Y. (2012). High-temperature oxidation resistance of austenitic stainless steel Cr18Ni11Cu3Al3MnNb. Journal of Iron Steel Research International. 19, 74-78. DOI: 10.1016/S1006-706X(12)60103-4.
[10] Kaya, A.A. (2002). Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: II. Carburization and carbide transformations. Materials Characterization. 49, 23-34. DOI: 10.1016/S1044-5803(02)00284-X.
[11] Li, H., Zhang, B., Jiang, Z., Zhang, S., Feng, H., Han, P., Dong, N., Zhang, W., Li, G., Fan, G. & Lin, Q. (2016). A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air. Journal of Alloys and Compounds. 686, 326-338. DOI: 10.1016/j.jallcom.2016.06.023.
[12] M. Salehi Doolabi, B. Ghasemi, S.K. Sadrnezhaad, A. Feizabadi, A. HabibollahZadeh, D. Salehi Doolabi, M. AsadiZarch. (2017). Comparison of Isothermal with cyclic oxidation behavior of “Cr-Aluminide” coating on inconel 738LC at 900 °C. Oxidation of Metals. 87, 57-74. DOI: 10.1007/s11085-016-9657-5.
[13] De Almeida, L.H., Ribeiro, A.F. & Le May, I. (2002). Microstructural characterization of modified 25Cr-35Ni centrifugally cast steel furnace tubes. Materials Characterization. 49, 219-229. DOI: 10.1016/S1044-5803(03)00013-5.
[14] Nishimoto, K., Saida, K., Inui, M. & Takahashi, M. (2001). Changes in microstructure of HP-modified, heat-resisting cast alloys under long-term aging. Repair weld cracking of service-exposed, HP-modified, heat-resisting cast alloys (2nd report). Welding International. 15(7), 509-517. DOI: 10.1080/ 09507110109549397.
[15] Joubert, J.M., St-Fleur, W., Sarthou, J., Steckmeyer, A. & Fournier, B. (2014). Equilibrium characterization and thermodynamic calculations on highly alloyed refractory steels. Calphad Comput. Coupling Phase Diagrams Thermochem. 46, 55-61. DOI: 10.1016/j.calphad. 2014.02.002.
[16] Ramos, P.A., Coelho, R.S., Pinto, H.C., Soldera, F., Mücklich, F. & Brito, P. (2021). Microstructure and cyclic oxidation behavior of modified Nb-alloyed A297 HH refractory austenitic stainless steel. Materials Chemistry and Physics. 263, 124361. DOI: 10.1016/j.matchemphys. 2021.124361.
[17] Ramos, P.A., Coelho, R.S., Soldera, F., Pinto, H.C., Mücklich, F. & Brito,P. (2020). Residual stress analysis in thermally grown oxide scales developed on Nb-alloyed refractory austenitic stainless steels. Corrosion Science. 178, 109066. DOI: 10.1016/j.corsci.2020.109066.
[18] McCafferty E. (2010). Introduction to corrosion science. Springer Science & Business Media. DOI: 10.1007/978-1-4419-0455-3.

Go to article

Authors and Affiliations

P.A. Ramos
1 2
R.S. Coelho
3
H.C. Pinto
4
F. Soldera
5
F. Mücklich
5
P.P. Brito
1

  1. Pontifical Catholic University of Minas Gerais, Brazil
  2. Federal Institute of Science and Technology of Minas Gerais, Brazil
  3. SENAI CIMATEC, Institute of Innovation for Forming and Joining of Materials, Av. Orlando Gomes, 1845, Piatã, 41650-010, Salvador-BA, Brazil
  4. Department of Materials Engineering - SMM, São Carlos School of Engineering – EESC, University of São Paulo – USP, São Carlos, SP, Brazil
  5. Chair of Functional Materials, Department of Materials Science, Saarland University, 66123, Saarbrücken, Saarland, Germany

This page uses 'cookies'. Learn more