Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Cyanobacterial and algal blooms lead to the deterioration of freshwater ecosystems but also generate technical problems in water management in the industry. Power plants often use freshwater lakes and reservoirs as a source of cooling water and in the case of cogeneration stations (combined heat and power) also as a source of agents for heating energy distribution. A preliminary research in one of the heat and power stations in eastern Poland which uses water from suffering with algal blooms reservoir was carried out in April 2011. The study was focused on the changes in the phytoplankton quantitative and qualitative structure as well as in basic physico- -chemical parameters along the water treatment line, which consists of several stages serving as sampling points (from the pump station to the purified water tank). The initial phytoplankton biomass in the reservoir was high (fresh biomass: 65.8 mg dm-3, chlorophyll a: 146.7 μg dm-3) with diatoms prevailing (98% of the total biomass) from which the most numerous were: Cyclotella comta and Aulacoseira granulata. After several stages of the purification process (sedimentation, biocide addition, flocculation, gravel filtering, ion exchange) the water still consisted a considerable amount of algae (fresh biomass: 2.48 mg dm-3, chlorophyll a: 6.0 μg dm-3). However, the final biomass in purified water tank (after reversed osmosis process) was very low (fresh biomass: 0.03 mg dm-3, chlorophyll a: 0.1 μg dm-3). Results had shown that high algal biomass in the water used in power generation plant is difficult to remove and consequently requires considerable technical (thus also economical) efforts to adjust the water for the industrial use.
Go to article

Authors and Affiliations

Monika Tarkowska-Kukuryk
Wojciech Pęczuła
Tomasz Mieczan
Wojciech Płaska
Jacek Rechulicz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a modified algorithm for choosing the optimal coefficient of the share of cogeneration in district heating systems taking into account additional benefits concerning the promotion of highefficiency cogeneration and biomass cofiring. The optimal coefficient of the share of cogeneration depends first of all on the share of the heat required for preparing the hot tap water. The final result of investigations is an empirical equation describing the influence of the ratio of the heat flux for the production of hot tap water to the maximum flux for space heating and ventilation, as well as the share of chemical energy of biomass in the fuel mixture on the optimal value of the share of cogeneration in district heating systems. The approach presented in the paper may be applied both in back-pressure combined heat and power (CHP) plants and in extraction-condensing CHP plants.

Go to article

Authors and Affiliations

Andrzej Ziębik
Paweł Gładysz
Download PDF Download RIS Download Bibtex

Abstract

The article analyzes the risk factors related to the energy use of alternative fuels from waste. The essence of risk and its impact on economic activity in the area of waste management were discussed. Then, a risk assessment, on the example of waste fractions used for the production of alternative fuel, was carried out. In addition, the benefits for the society and the environment from the processing of alternative fuels for energy purposes, including, among others: reducing the cost of waste disposal, limiting the negative impact on water, soil and air, reducing the amount of waste deposited, acquisition of land; reduction of the greenhouse effect, facilitating the recycling of other fractions, recovery of electricity and heat, and saving conventional energy carriers, were determined. The analysis of risk factors is carried out separately for plants processing waste for alternative fuel production and plants producing energy from this type of fuel. Waste processing plants should pay attention to investment, market (price, interest rate, and currency), business climate, political, and legal risks, as well as weather, seasonal, logistic, technological, and loss of profitability or bankruptcy risks. Similar risks are observed in the case of energy companies, as they operate in the same external environment. Moreover, internal risks may be similar; however, the specific nature of the operation of each enterprise should be taken into account. Energy companies should pay particular attention to the various types of costs that may threaten the stability of operation, especially in the case of regulated energy prices. The risk associated with the inadequate quality of the supplied and stored fuels is important. This risk may disrupt the technological process and reduce the plant’s operational efficiency. Heating plants and combined heat and power plants should also not underestimate the non-catastrophic weather risk, which may lead to a decrease in heat demand and a reduction in business revenues. A comprehensive approach to risk should protect enterprises against possible losses due to various types of threats, including both external and internal threats.

Go to article

Authors and Affiliations

Oleksandr Ivashchuk
Bartosz Łamasz
Natalia Iwaszczuk
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of the sustainable development of electricity generation sources in the National Power System (NPS). The criteria to be met by sustainable power systems were determined. The paper delineates the power balance of centrally dispatched power generation units (CDPGU), which is required for the secure work of the NPS until 2035. 19 prospective electricity generation technologies were defined. They were divided into the following three groups: system power plants, large and medium combined heat and power (CHP) plants, as well as small power plants and CHP plants (distributed sources). The quantities to characterize the energy effectiveness and CO2 emission of the energy generation technologies analyzed were determined. The unit electricity generation costs, discounted for 2018, including the costs of CO2 emission allowance, were determined for the particular technologies. The roadmap of the sustainable development of the generation sources in the NPS between 2020 and 2035 was proposed. The results of the calculations and analyses were presented in tables and figure

Go to article

Authors and Affiliations

Bolesław Zaporowski
Download PDF Download RIS Download Bibtex

Abstract

This article presents an analysis of the sustainable development of generation sources in the Polish National Electric Power System (NEPS). First, the criteria for this development were formulated. The paper also discusses the current status of generation sources, operating in power plants and combined heat and power (CHP) plants of NEPS. Furthermore, it includes a prediction of power balance in NEPS, determining; predicted electricity gross use, predicted demand for peak capacity during the winter peak, predicted demand for peak capacity during the summer peak and required new capacity of centrally dispatched generation units (CDGUs) in 2025, 2030, 2035 and 2040 that would ensure NEPS operational security. Twenty prospective technologies of electricity generation and combined electricity and heat production were analyzed. These were divided into three groups: system power plants, high- and medium-capacity combined heat and power (CHP) plants, as well as small-capacity power plants and CHP plants (dispersed sources). The unit costs of electricity generation discounted for 2021 were calculated for the analyzed technologies, taking the costs of CO2 emission allowances into account. These costs include: capital costs, fuel costs, maintenance costs, operation costs and environmental costs (CO2 emission allowances). This proceeds to a proposal of a program of the sustainable development of generation sources in NEPS, which includes the desired capacity structure of power plants and CHP plants, and the optimal structure of electricity production in 2030 and 2040. The results of calculations and analyses are presented in tables and figure.
Go to article

Bibliography

ARE 2021. Statistical Information on Electricity (Informacja statystyczna o energii elektrycznej). Agencja Rynku Energii SA, Nr 6, Warszawa (in Polish).
BP 2021. BP Statistical Review of World Energy, Edition 2021. [Online] https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Accssed: 2021-09-17].
Directive 2005/89. Directive 2005/89/UE of the European Parliament and Council of 18 January 2006 on concerning measures to safeguarded security of electricity supply and infrastructure investment. Official Journal of the European Union, 2006, L 33/1 – L33/22.
Directive 2012/27. Directive 2012/27/UE of the European Parliament and Council of 25 October 2012 on energy efficiency. Official Journal of the European Union, 2012, L315/1 – L315/56.
KPEiK 2019. National Energy and Climate Plan 2021–2030 (Krajowy plan na rzecz energii i klimatu na lata 2021–2030). Ministerstwo Aktywów Państwowych, 2019 (in Polish).
MP 2020. Polish Nuclear Power Programme (Program polskiej energetyki jądrowej). Monitor Polski 2020, poz. 946 (in Polish).
PSE 2016. Forecast of Peak Capacity Demand Coverage in 2016–2035 (Prognoza pokrycia zapotrzebowania szczytowego na moc w latach 2016–2035). Polskie Sieci Elektroenergetyczne SA. [Online] https://www.pse.pl/-/prognoza-pokrycia-zapotrzebowania-szczytowego-na-moc-w-latach-2016-2035 [Accessed: 2021-08-10] (in Polish).
PSE 2020. Development Plan of Present and Future Electricity Satisfaction Demand Coverage in 2021–2035 (Plan rozwoju w zakresie zaspokojenia obecnego i przyszłego zapotrzebowania na energię elektryczną na lata 2021–2030). Polskie Sieci Elektroenergetyczne SA. [Online] https://www.pse.pl/ documents/20182/21595261/Dokument_glowny_PRSP_2021-2030_20200528.pdf [Accessed: 2021-08-10] (in Polish).
PEP2040 2021. Energy Policy of Poland until 2040 (Polityka energetyczna Polski do 2040 roku). MP 2021, poz. 128 (in Polish). Statistics 2019. Statistics of Polish Heat Industry 2018 (Statystyka Ciepłownictwa Polskiego 2018). Warszawa: Agencja Rynku Energii SA (in Polish).
Statistics 2020. Statistics of Polish Electric Power Industry 2019 (Statystyka Elektroenergetyki Polskiej 2019). Warszawa: Agencja Rynku Energii SA (in Polish).
URE 2020. Information about Investment Plans in New Generation Capacity in 2020–2034 (Informacja na temat planów inwestycyjnych w nowe moce wytwórcze w latach 2020–2034). Urząd Regulacji Energetyki. [Online] https://www.ure.gov.pl>download>Raport-Plany inwestycyjne w nowe moce wytwórcze latach 2020-2034 [Accessed: 2021-08-10] (in Polish).
Zaporowski, B. 2016. Sustainable development of the electricity generation sources (Zrównoważony rozwój źródeł energii elektrycznej). Polityka Energetyczna – Energy Policy Journal 19(3), pp. 35–48 (in Polish).
Zaporowski, B. 2019. Energy and economic effectiveness of prospective generation technologies for Polish electric power industry (Efektywność energetyczna i ekonomiczna perspektywicznych dla polskiej elektroenergetyki technologii wytwórczych). Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej 63, część 2, pp. 87–90 (in Polish).
Go to article

Authors and Affiliations

Bolesław Zaporowski
1
ORCID: ORCID

  1. Institute of Electric Power Engineering of Poznań University of Technology, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of optimizing the coefficient of the share of cogeneration expressed by an empirical formula dedicated to designers, which will allow to determine the optimal value of the share of cogeneration in contemporary cogeneration systems with the thermal storages feeding the district heating systems. This formula bases on the algorithm of the choice of the optimal coefficient of the share of cogeneration in district heating systems with the thermal storage, taking into account additional benefits concerning the promotion of high-efficiency cogeneration and the decrease of the cost of CO2 emission thanks to cogeneration. The approach presented in this paper may be applicable both in combined heat and power (CHP) plants with back-pressure turbines and extraction-condensing turbines.
Go to article

Authors and Affiliations

Andrzej Ziębik
Paweł Gładysz

This page uses 'cookies'. Learn more