Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Wind turbines are nowadays one of the most promising energy sources. Every year, the amount of energy produced from the wind grows steadily. Investors demand turbine manufacturers to produce bigger, more efficient and robust units. These requirements resulted in fast development of condition-monitoring methods. However, significant sizes and varying operational conditions can make diagnostics of the wind turbines very challenging.

The paper shows the case study of a wind turbine that had suffered a serious rolling element bearing (REB) fault. The authors compare several methods for early detection of symptoms of the failure. The paper compares standard methods based on spectral analysis and a number of novel methods based on narrowband envelope analysis, kurtosis and cyclostationarity approach.

The very important problem of proper configuration of the methods is addressed as well. It is well known that every method requires setting of several parameters. In the industrial practice, configuration should be as standard and simple as possible. The paper discusses configuration parameters of investigated methods and their sensitivity to configuration uncertainties

Go to article

Authors and Affiliations

Jacek Urbanek
Tomasz Barszcz
Tadeusz Uhl
Download PDF Download RIS Download Bibtex

Abstract

In recent times, the concept of hard turning has gained awareness in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard, wear-resistant steel parts. The major apprehension in hard turning is the tool vibration, which affects the surface finish of the work piece, has to be controlled and monitored. In order to control tool vibration in metal cutting, a magnetorheological fluid damper which has received great attention in suppressing tool vibration was developed and used. Also an attempt has been made in this study to monitor tool vibration using the skewness and kurtosis parameters of acoustic emission (AE) signal for the tool holder with and without magnetorheological damper. Cutting experiments were conducted to arrive at a set of operating parameters that can offer better damping characteristics to minimize tool vibration during turning of AISI4340 steel of 46 HRC using hard metal insert with sculptured rake face. From the results, it was observed that the presence of magnetorheological damper during hard turning reduces tool vibration and there exist a strong relationship between tool vibration and acoustic emission (AERMS) signals to monitor tool condition. This work provides momentous understanding on the usage of magnetorheological damper and AE sensor to control and monitor the tool condition during turning of hardened AISI4340 steel.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

P. Sam Paul
Mohammed Jazeel
A.S. Varadarajan

Download PDF Download RIS Download Bibtex

Abstract

Circuit Breakers (CBs) play an important role in ensuring the safe operation of protection systems. Condition Monitoring (CM) devices are widely implemented to extend lifetime, and to improve the maintenance quality. The present paper proposes a cost-based prioritization approach for CBs in a network equipped withCMdevices. To this end, a mathematical formulation is developed for the categorization and modeling of equipment failures based on their severity. This formulation quantifies the effect of the CM devices on the outage rate of the equipment. The reliability parameters of the substations 400/132/20 KV, including the failure rate, λ, average repair time, r, average outage time, U, substations, in two status of without CM and with CM of the CBs are calculated. These parameters are calculated implementing a minimal cut-set method. The outage rate of equipment with and without the CM devices is used to determine the effect of the CM devices on the reliability of the network. Finally, the prioritization of substations to install theCMdevices on the CBs has been investigated in terms of the Expected Energy Not Supplied (EENS) and costs of CM. To verify the effectiveness and applicability of the method, the proposed approach is applied to the CBs in the power transmission network in the Khorasan Regional Electricity Company (KREC) in Iran.

Go to article

Authors and Affiliations

Ali Karimabadi
Mohammad Ebrahim Hajiabadi
Ebadollah Kamyab
Download PDF Download RIS Download Bibtex

Abstract

The popularity of high-efficiency permanent magnet synchronous motors in drive systems has continued to grow in recent years. Therefore, also the detection of their faults is becoming a very important issue. The most common fault of this type of motor is the stator winding fault. Due to the destructive character of this failure, it is necessary to use fault diagnostic methods that facilitate damage detection in its early stages. This paper presents the effectiveness of spectral and bispectrum analysis application for the detection of stator winding faults in permanent magnet synchronous motors. The analyzed diagnostic signals are stator phase current, stator phase current envelope, and stator phase current space vector module. The proposed solution is experimentally verified during various motor operating conditions. The object of the experimental verification was a 2.5 kW permanent magnet synchronous motor, the construction of which was specially prepared to facilitate inter-turn short circuits modelling. The application of bispectrum analysis discussed so far in the literature has been limited to vibration signals and detecting mechanical damages. There are no papers in the field of motor diagnostic dealing with the bispectrum analysis for stator winding fault detection, especially based on stator phase current signal.
Go to article

Authors and Affiliations

Przemysław Pietrzak
1
ORCID: ORCID
Marcin Wolkiewicz
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Department of Electrical Machines, Drives and Measurements, Wybrzeze Wyspia ˙ nskiego 27, ´ 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Bearings are one of the pivotal parts of rotating machines. The health of a bearing is responsible for the hassle-free operation of a machine. As vibration signatures give intimations of machine failure at an earlier stage, mostly vibration-based condition monitoring is used to monitor bearing’s health for avoiding the risk of failure. In this work, a simulation-based approach is adopted to identify surface defects at ball bearing raceways. The vibration data in time and frequency domain is captured by FFT analyzer from an experimental setup. The time frequency domain conversion of a raw time domain data was carried out by wavelet packet transform, as it takes into account the transients and spectral frequencies. The rotor bearing model is simulated in Ansys. Finally, most influencing statistical features were extracted by employing Principal Component Analysis (PCA), and fed to Multiclass Support Vector Machine (MSVM). To train the algorithm, the simulated data is used whereas the data acquired from FFT analyzer is used for testing. It can be concluded that the defects are characterized by Ball Pass Frequency (BPF) at inner race and outer raceway as indicated in the literature. The developed model is capable to monitor bearing’s health which gives an average accuracy of 99%.
Go to article

Bibliography

[1] Z. Taha and N.T. Dung. Rolling element bearing fault detection with a single point defect on the outer raceway using finite element analysis. The 11th Asia Pacific Industrial Engineering and Management Systems Conference and the 14th Asia Pacific Regional Meeting of International Foundation for Production Research, Melaka, Malaysia, 7-10 Dec. 2010.
[2] P. Jayaswal, S.N. Verma, and A.K. Wadhwani. Development of EBP-Artificial neural network expert system for rolling element bearing fault diagnosis. Journal of Vibration and Control, 17(8):1131–1148, 2011. doi: 10.1177/1077546310361858.
[3] V.V. Rao and Ch. Ratnam. A comparative experimental study on identification of defect severity in rolling element bearings using acoustic emission and vibration analysis. Tribology in Industry, 37(2):176–185, 2015.
[4] S. Shah and A. Guha. Bearing health monitoring. Tribology in Industry, 38(3):297–307, 2016.
[5] C. Ratnam, N.M. Jasmin, V.V. Rao, and K.V. Rao. A comparative experimental study on fault diagnosis of rolling element bearing using acoustic emission and soft computing techniques. Tribology in Industry, 40(3):501–513, 2018. doi: 10.24874/ti.2018.40.03.15.
[6] K. Kappaganthu and C. Nataraj. Modelling and analysis of outer race defects in rolling element bearings. Advances in Vibration Engineering, 11(4):371–384, 2012.
[7] P.K. Kankar, S.C. Sharma, and S.P. Harsha. Fault diagnosis of ball bearings using continuous wavelet transform. Applied Soft Computing, 11(2):2300–2312, 2011. doi: 10.1016/j.asoc.2010.08.011.
[8] A. Sharma, M. Amarnath, and P.K. Kankar. Feature extraction and fault severity classification in ball bearings. Journal of Vibration and Control, 22(1):176–192, 2014. doi: 10.1177/1077546314528021.
[9] V. Hariharan and P.S.S. Srinivasan. Vibration analysis of parallel misaligned shaft with ball bearing system. Sonklanakarin Journal of Science and Technology, 33(1):61–68, 2011.
[10] J.D. Wu and C.H. Liu. An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network. Expert Systems with Applications, 36(3):4278–4286, 2009. doi: 10.1016/j.eswa.2008.03.008.
[11] J.S. Rapur and R.Tiwari. Experimental fault diagnosis for known and unseen operating conditions of centrifugal pumps using MSVM and WPT based analyses. Measurement, 147:106809, 2019. doi: 10.1016/j.measurement.2019.07.037.
[12] C. Cortes and V. Vapnik. Support vector network. Machine Learning, 20(3):273–297, 1995. doi: 10.1007/BF00994018.
[13] S. Damuluri, K. Islam, P. Ahmadi, and N.S. Qureshi. Analyzing navigational data and predicting student grades using support vector machine. Emerging Science Journal, 4(4):243–252, 2020. doi: 10.28991/esj-2020-01227.
[14] R. Tiwari. Rotor Systems: Analysis and Identification. CRC Press, 2017. doi: 10.1201/9781315230962.
[15] V.C. Handikherkar and V.M. Phalle. Gear fault detection using machine learning techniques -- A simulation-driven approach. International Journal of Engineering, 34(1):212–223, 2021. doi: 10.5829/IJE.2021.34.01A.24.
[16] S. Patil and V. Phalle. Fault detection of anti-friction bearing using ensemble machine learning methods. International Journal of Engineering, 31(11):1972–1981, 2018.
[17] A.S. Minhas, G. Singh, J. Singh, P.K. Kankarand, and S. Singh. A novel method to classify bearing faults by integrating standard deviation to refined composite multi-scale fuzzy entropy. Measurement,154:107441, 2020. doi: 10.1016/j.measurement.2019.107441.
[18] www.mfpt.org
Go to article

Authors and Affiliations

Pallavi Khaire
1 2
ORCID: ORCID
Vikas Phalle
1

  1. Veermata Jijabai Technological Institute, Mumbai, India
  2. Fr. C. Rodrigues Institute of Technology, Navi Mumbai, India
Download PDF Download RIS Download Bibtex

Abstract

The condition monitoring techniques like acoustic emission, vibration analysis, and infrared thermography, used for the failure diagnosis of bearings, require longer processing time, as they have to perform acoustical measurement followed by signal processing and further analysis using special software. However, for any bearing, its period of usage can be easily determined within an hour, by measuring the bearing sound, using sound level meter (SLM). In this paper the acoustical analysis of the spindle bearing of a radial drilling machine was performed using SLM, by measuring the sound pressure level of the bearing in decibels, for different frequencies, while muting all the other noises. Then using an experimental set up, two database readings were taken, one for new bearing and the other for completely damaged bearing, both are SKF6207, which itself is the spindle bearing. From these three sets of sound pressure level readings, the period of usage of the spindle bearing, was calculated using an interpolation equation, by substituting the life of the bearing from the manufacturer’s catalogue. Therefore, for any machine with a SKF6207 bearing, its usage time can be estimated using the database readings and one measurement on that machine, all with the same speed.

Go to article

Authors and Affiliations

S. Charles
Joslin D. Vijaya

This page uses 'cookies'. Learn more