Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Comparison of the electromagnetic performance of a flux-switching permanent magnet (PM) machine having two separate stators as well as different winding topologies is investigated in this paper. Different stator and rotor pole combinations of these machines are also considered. The analysis includes the open-circuit and on-load characteristics of the analyzed machines. It is observed that, the largest fundamental values of electromagnetic torque, for each winding topology, is seen in the 11-rotor-pole and 10-rotor-pole machines having alternate- and all-pole-wound configurations, respectively. Moreover, significant ripple is observed in the waveforms of the even-number rotor pole machines compared to their corresponding odd-number rotor pole counterparts. Overall, the alternate-pole-wound machines essentially have larger torque-density than their equivalent all-pole-wound ones. The investigated machine is also tested for validation.

Go to article

Authors and Affiliations

Chukwuemeka Chijioke Awah
Ogbonnaya Inya Okoro
Download PDF Download RIS Download Bibtex

Abstract

Accurate prediction of power loss distribution within an electrical device is highly desirable as it allows thermal behavior to be evaluated at the early design stage. Three-dimensional (3-D) and two-dimensional (2-D) finite element analysis (FEA) is applied to calculate dc and ac copper losses in the armature winding at high-frequency sinusoidal currents. The main goal of this paper is showing the end-winding effect on copper losses. Copper losses at high frequency are dominated by the skin and proximity effects. A time-varying current has a tendency to concentrate near the surfaces of conductors, and if the frequency is very high, the current is restricted to a very thin layer near the conductor surface. This phenomenon of nonuniform distribution of time-varying currents in conductors is known as the skin effect. The term proximity effect refers to the influence of alternating current in one conductor on the current distribution in another, nearby conductor. To evaluate the ac copper loss within the analyzed machine a simplified approach is adopted using one segment of stator core. To demonstrate an enhanced copper loss due to ac operation, the dc and ac resistances are calculated. The resistances ratio ac to dc is strongly dependent on frequency, temperature, shape of slot and size of slot opening.

Go to article

Authors and Affiliations

Adrian Młot
Mariusz Korkosz
Piotr Grodzki
Marian Łukaniszyn
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study of control strategies for 5-phase permanent magnet synchronous motors (PMSMs) supplied by a five-leg voltage source inverter. Based on the vectorial decomposition of the multi-phase machine, fictitious machines, magnetically decoupled, allow a more adequate control. In this paper, our study focuses on the vector control of a multi-phase machine using a linear proportional-integral-derivative (PID) current regulator in the cases of sinusoidal and trapezoidal back-electromotive force (EMF) waveforms. In order to determine currents’ references, two strategies are adopted. First one aims to minimize copper losses under constant torque, while the second one targets to increase torque for a given copper losses. These techniques are tested under a variable speed control strategy based on a proportional-integral (PI) regulator and experimentally validated.

Go to article

Authors and Affiliations

Fatima Mekri
Seifeddine Ben Elghali
Jean-Frédéric Charpentier

This page uses 'cookies'. Learn more