Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Providing roughness is an effective method to heat fluids to high temperature. Present paper make use of concave dimple roughness on one and three sides of roughened ducts aimed at determining rise in heat transfer and friction of three sides over one side roughened duct. Three sides roughened duct produces high heat transfer compared to one side roughened. Results are shown as a rise in Nusselt number and friction factor of three sides over one side roughened duct. Experimental investigation was conducted under actual outdoor condition at National Institute of Technology Jamshedpur, India to test various sets of roughened collectors. Roughness parameter varied as relative roughness pitch 8–15, relative roughness height 0.018–0.045, dimple depth to diameter ratio 1–2, Reynolds number 2500–13500 at fixed aspect ratio (width/hight) 8. Highest enhancement in Nusselt number for varying relative roughness pitch, height, and diameter ratio was respectively found as 2.6 to 3.55 times, 1.91 to 3.42 times and 3.09 to 3.94 times compared to one side dimple roughened duct. Highest rise in friction for three sides over one side roughened duct for these varying parameters was respectively found as 1.62 to 2.79 times, 1.52 to 2.34 times and 2.21 to 2.56 times. To visualize the effect of roughness parameter on heat transfer and friction factor, variation in Nusselt number and friction factor for varying roughness parameters with Reynolds number is shown.

Go to article

Authors and Affiliations

Vikash Kumar
Download PDF Download RIS Download Bibtex

Abstract

The performance of a novel airfoil-based tube with dimples is numerically studied in the present work. The effect of Reynolds number Re, dimples number N, relative depth H/D, and cross-distribution angle α on flow and heat transfer characteristics are discussed for Re in the range between 7,753 and 21,736. The velocity contour, temperature contour, and local streamlines are also presented to get an insight into the heat transfer enhancement mechanisms. The results show that both the velocity magnitude and flow direction change, and fluid dynamic vortexes are generated around the dimples, which intensify the flow mixing and interrupt the boundary layer, resulting in a better heat transfer performance accompanied by a certain pressure loss compared with the plain tube. The Nusselt number Nu of the airfoil-based tube increases with the increase of dimples number, relative depth, and Reynolds numbers, but the effect of cross-distribution angle can be ignored. Under geometric parameters considered, the airfoil-based tube with N = 6, H/D = 0.1, α = 0° and Re = 7,753 can obtain the largest average PEC value 1.23. Further, the empirical formulas for Nusselt number Nu and friction factor f are fitted in terms of dimple number N, relative depth H/D, and Reynolds number Re, respectively, with the errors within ± 5%. It is found that the airfoil-based tube with dimples has a good comprehensive performance.
Go to article

Authors and Affiliations

Houju Pei
1
ORCID: ORCID
Meinan Liu
2
Kaijie Yang
3
Li Zhimao
1
Chao Liu
1

  1. Shanghai Aircraft Design and Research Institute Environment Control and Oxygen System Department, China
  2. College of Energy and Power Engineering, Jiangsu University of Science and Technology, China
  3. Key Laboratory of Aircraft Environment Control and Life Support, MIIT, Nanjing University of Aeronautics and Astronautics, China

This page uses 'cookies'. Learn more