Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 59
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present work focuses on analyses of the autoignition delay time predicted by the large eddy simulation (LES) method by applying different subgrid scales (SGS) models and two different discretization schemes. The analysed flow configuration is a two-phase chemically reacting turbulent flow with monodispersed evaporating fuel droplets. The impact of numerical procedure is investigated in a 3D flow domain with a temporally evolving mixing layer that constituted between the streams of fuel and oxidizer that moved in opposite directions. The upper stream of cold gas carries a dispersed fuel spray (ethanol at 300 K). The lower stream is a hot air at 1000 K. Three commonly used in LES, SGS models are investigated, namely: classical Smagorinsky model, model proposed by Vreman and the σ-model proposed by Nicoud. Additionally, the impact of two discretization schemes, i.e., total variation diminishing (TVD) and weighted essentially nonoscillatory (WENO) is analysed. The analysis shows that SGS model and discretization scheme can play a crucial role in the predictions of the autoignition time. It is observed that for TVD scheme the impact of SGS model is rather small. On the contrary, when the WENO scheme is applied the results are much more dependent on the SGS model.
Go to article

Authors and Affiliations

Jakub Stempka
Download PDF Download RIS Download Bibtex

Abstract

Given a linear discrete system with initial state x0 and output function yi , we investigate a low dimensional linear systemthat produces, with a tolerance index ǫ, the same output function when the initial state belongs to a specified set, called ǫ-admissible set, that we characterize by a finite number of inequalities. We also give an algorithm which allows us to determine an ǫ-admissible set.

Go to article

Authors and Affiliations

A. Abdelhak
M. Rachik
Download PDF Download RIS Download Bibtex

Abstract

The article presents a new discretization method of a continuous-time linear model of sensor dynamics. It can be useful to reduce measuring errors related to the inertia of the sensor. For example it is important in the measurement of rapid processes as temperature changes in combustion chambers, or for shortening the time needed to establish the sensor readings in a transition state. There is assumed that sensor dynamics can be approximated by linear differential equation or transfer function. The searched coefficients of equivalent difference equation or discrete transfer function are obtained from Taylor expansion of a sensor output signal and then on the solution of the linear set of equations. The method does not require decomposition of sensor transfer function for zeros and poles and can be applied to the case of transfer function with zeros equal to zero. The method was used to compensate the dynamics of sensor measuring fast signals. The Bode characteristics of a compensator were compared with others derived using classical methods of discretization of linear models. Additionally, signals in time were presented to show the dynamic error before and after compensation.
Go to article

Authors and Affiliations

Sławomir Gryś
1
Waldemar Minkina
2

  1. University of Technology, Faculty of Electrical Engineering, Poland
  2. Jan Dlugosz University in Czestochowa, Faculty of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we show that signal sampling operation can be considered as a kind of all-pass filtering in the time domain, when the Nyquist frequency is larger or equal to the maximal frequency in the spectrum of a signal sampled. We demonstrate that this seemingly obvious observation has wideranging implications. They are discussed here in detail. Furthermore, we discuss also signal shaping effects that occur in the case of signal under-sampling. That is, when the Nyquist frequency is smaller than the maximal frequency in the spectrum of a signal sampled. Further, we explain the mechanism of a specific signal distortion that arises under these circumstances. We call it the signal shaping, not the signal aliasing, because of many reasons discussed throughout this paper. Mainly however because of the fact that the operation behind it, called also the signal shaping here, is not a filtering in a usual sense. And, it is shown that this kind of shaping depends upon the sampling phase. Furthermore, formulated in other words, this operation can be viewed as a one which shapes the signal and performs the low-pass filtering of it at the same time. Also, an interesting relation connecting the Fourier transform of a signal filtered with the use of an ideal low-pass filter having the cut frequency lying in the region of under-sampling with the Fourier transforms of its two under-sampled versions is derived. This relation is presented in the time domain, too.

Go to article

Authors and Affiliations

Andrzej Borys
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Turbulent boundary layer separation induced by positive pressure gradient at a plane surface is investigated experimentally. Separation is delayed by means of a jet vortex generator in a form of small jets injected to the boundary layer through orifices distributed across the main flow. The effect of jets intensity on delay of separation is examined. Swirled and non-swirled jets have been used. The energy of the air supplying the generator required to delay boundary layer separation is in the former case up to 40% lower than in the latter one.
Go to article

Authors and Affiliations

Andrzej Szumowski
Jan Wojciechowski
Download PDF Download RIS Download Bibtex

Abstract

The global stability of discrete-time nonlinear systems with descriptor positive linear parts and positive scalar feedbacks is addressed. Sufficient conditions for the global stability of standard and fractional nonlinear systems are established. The effectiveness of these conditions is illustrated on numerical examples.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
ORCID: ORCID
Andrzej Ruszewski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The stability analysis for discrete-time fractional linear systems with delays is presented. The state-space model with a time shift in the difference is considered. Necessary and sufficient conditions for practical stability and for asymptotic stability have been established. The systems with only one matrix occurring in the state equation at a delayed moment have been also considered. In this case analytical conditions for asymptotic stability have been given. Moreover parametric descriptions of the boundary of practical stability and asymptotic stability regions have been presented.

Go to article

Authors and Affiliations

Andrzej Ruszewski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the ironmaking, sizes of raw materials such as iron ores and coke must be adjusted for subsequent process in the blast furnace. The depletion of high grade iron ore in recent years necessitates a technology that can utilize low-grade fine iron ores. Thus, steelmakers have been studying the sinter-briquette complex firing process that employs a method of charging the sinter feed together with briquettes made of fine iron ore. In this process, larger briquettes increase the briquette productivity per unit time but decrease the green strength of briquettes and they can break during transportation and charging. Thus, the briquette shape is very important.

Therefore, in this study, we simulate a twin roll briquetting process using the DEM analysis and compared the compressive force distributions in the briquette for different aspect ratios. This study is a new attempt, because research cases by numerical methods on the same or similar systems are very rare. Consequently, the optimal aspect ratio is 0.5 at briquette height 20 mm, 2.0 at 30 mm, and 1.5 at 40 mm. Also, the average compressive force increased in proportion with the pocket height at the same aspect ratio. Therefore, to increase the pocket depth for high productivity, the pocket height must also be increased for obtaining high strength briquettes.

Go to article

Authors and Affiliations

Kang-Min Kim
Jong-Ho Bae
Jeong-Whan Han
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

There are reasons researchers may be interested in accounting for spatial heterogeneity of preferences, including avoiding model misspecification and the resulting bias, and deriving spatial maps of willingness-to-pay (WTP), which are relevant for policy-making and environmental management. We employ a Monte Carlo simulation of three econometric approaches to account for spatial preference heterogeneity in discrete choice models. The first is based on the analysis of individual-specific estimates of the mixed logit model. The second extends this model to explicitly account for spatial autocorrelation of random parameters, instead of simply conditioning individual-specific estimates on population-level distributions and individuals’ choices. The third is the geographically weighted multinomial logit model, which incorporates spatial dimensions using geographical weights to estimate location-specific choice models. We analyze the performance of these methods in recovering population-, region- and individual-level preference parameter estimates and implied WTP in the case of spatial preference heterogeneity. We find that, although ignoring spatial preference heterogeneity did not significantly bias population-level results of the simple mixed logit model, neither individual-specific estimates nor the geographically weighted multinomial logit model was able to reliably recover the true region- and individual-specific parameters. We show that the spatial mixed logit proposed in this study is promising and outline possibilities for future development.
Go to article

Bibliography

[1] Abildtrup J., Garcia S., Olsen S. B., Stenger A., (2013), Spatial preference heterogeneity in forest recreation, Ecological Economics 92(1), 67–77.
[2] Broch S. W., Strange N., Jacobsen J. B., Wilson K. A., (2013a) Farmers’ willingness to provide ecosystem services and effects of their spatial distribution, Ecological Economics 92, 78–86.
[3] Broch S. W., Strange N., Jacobsen J. B., Wilson K. A., (2013b), Farmers’ willingness to provide ecosystem services and effects of their spatial distribution, Ecological Economics 92(0), 78–86.
[4] Budzinski W., Campbell D., Czajkowski M., Demsar U., Hanley N., (2018), Using geographically weighted choice models to account for spatial heterogeneity of preferences, Journal of Agricultural Economics 69(3), 606–626.
[5] Budzinski W., Campbell D., Czajkowski M., Demsar U., Hanley N., Using geographically weighted choice models to account for spatial heterogeneity of preferences, Journal of Agricultural Economics, forthcoming.
[6] Campbell D., Hutchinson W. G., Scarpa R., (2009), Using Choice Experiments to Explore the Spatial Distribution of Willingness to Pay for Rural Landscape Improvements, Environment and Planning A 41(1), 97–111.
[7] Campbell D., Scarpa R., Hutchinson W. G., (2008), Assessing the spatial dependence of welfare estimates obtained from discrete choice experiments, Letters in Spatial and Resource Sciences 1(2-3), 117–126.
[8] Carson R. T., Czajkowski M., (2014), The Discrete Choice Experiment Approach to Environmental Contingent Valuation, [in:] Handbook of choice modelling, Hess S., Daly A., [eds.] Elgar E., Northampton, MA.
[9] Czajkowski M., Budzinski W., (2015), An insight into the numerical simulation bias – a comparison of efficiency and performance of different types of quasi Monte Carlo simulation methods under a wide range of experimental conditions, Environmental Choice Modelling Conference, Copenhagen.
[10] Czajkowski M., Budzinski W., (2019), Simulation error in maximum likelihood estimation of discrete choice models, Journal of Choice Modelling 31, 73–85.
[11] Czajkowski M., Budzinski W., Campbell D., Giergiczny M., Hanley N., (2017), Spatial Heterogeneity of Willingness to Pay for Forest Management, Environmental and Resource Economics 68(3), 705–727.
[12] Dekker T., Koster P., Brouwer R., (2014), Changing with the Tide: Semiparametric Estimation of Preference Dynamics, Land Economics 90(4), 717– 745.
[13] Fotheringham A. S., Brunsdon C., Charlton M., (2003), Geographically weighted regression: the analysis of spatially varying relationships, John Wiley & Sons.
[14] Fotheringham S., Charlton M., Brunsdon C., (1998), Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis, Environment and Planning A 30(11), 1905–1927.
[15] Gelman A., Carlin J. B., Stern H. S., Dunson D. B., Vehtari A., Rubin D. B., (2014), Bayesian data analysis, CRC Press Boca Raton, FL.
[16] Hanley N., Czajkowski M., (2019), The Role of Stated Preference Valuation Methods in Understanding Choices and Informing Policy, Review of Environmental Economics and Policy 13(2), 248–266.
[17] Hess S., Train K., (2017), Correlation and scale in mixed logit models, Journal of Choice Modelling 23, 1–8.
[18] Hynes S., Hanley N., O’Donoghue C., (2010), A Combinatorial Optimization Approach to Nonmarket Environmental Benefit Aggregation via Simulated Populations, Land Economics 86(2), 345–362.
[19] Johnston R. J., Ramachandran M., (2014), Modeling Spatial Patchiness and Hot Spots in Stated Preference Willingness to Pay, Environmental and Resource Economics 59(3), 363–387.
[20] Johnston R. J., Ramachandran M., Schultz E. T., Segerson K., Besedin E. Y., (2011), Characterizing spatial pattern in ecosystem service values when distance decay doesn’t apply: choice experiments and local indicators of spatial association. Paper number 103374 provided by Agricultural and Applied Economics Association in its series 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania.
[21] Koster P. R., Koster H. R. A., (2015), Commuters’ preferences for fast and reliable travel: A semi-parametric estimation approach, Transportation Research Part B: Methodological 81, Part 1, 289–301.
[22] LeSage J. P., (1999), The Theory and Practice of Spatial Econometrics, unpublished manuscript available at: http://www.spatial-econometrics.com.
[23] McFadden D., (1974), Conditional Logit Analysis of Qualititative Choice Behaviour, [in]: Frontiers in Econometrics, [ed.:] Zarembka P., Academic Press, New York, NY, 105–142.
[24] Smith T. E., LeSage J. P., (2004), A bayesian probit model with spatial dependencies, Spatial and Spatiotemporal Econometrics 18(18), 127–160.
[25] Train K., Sonnier G., (2005), Mixed Logit with Bounded Distributions of Correlated Partworths, [in:] Applications of Simulation Methods in Environmental and Resource Economics, [eds.:] Scarpa R., Alberini A., Springer Netherlands, 117–134.
[26] Train K. E., (2009), Discrete Choice Methods with Simulation, 2 Ed., Cambridge University Press, New York.
[27] Yao R. T., Scarpa R., Turner J. A., Barnard T. D., Rose J. M., Palma J. H. N., Harrison D. R., (2014), Valuing biodiversity enhancement in New Zealand’s planted forests: Socioeconomic and spatial determinants of willingness-to-pay, Ecological Economics 98(0), 90–101.


Go to article

Authors and Affiliations

Wiktor Budziński
1
ORCID: ORCID
Mikołaj Czajkowski
1
ORCID: ORCID

  1. University of Warsaw
Download PDF Download RIS Download Bibtex

Abstract

Dynamics and control of discrete chaotic systems of fractional-order have received considerable attention over the last few years. So far, nonlinear control laws have been mainly used for stabilizing at zero the chaotic dynamics of fractional maps. This article provides a further contribution to such research field by presenting simple linear control laws for stabilizing three fractional chaotic maps in regard to their dynamics. Specifically, a one-dimensional linear control law and a scalar control law are proposed for stabilizing at the origin the chaotic dynamics of the Zeraoulia-Sprott rational map and the Ikeda map, respectively. Additionally, a two-dimensional linear control law is developed to stabilize the chaotic fractional flow map. All the results have been achieved by exploiting new theorems based on the Lyapunov method as well as on the properties of the Caputo h-difference operator. The relevant simulation findings are implemented to confirm the validity of the established linear control scheme.
Go to article

Bibliography

[1] C. Goodrich and A.C. Peterson: Discrete Fractional Calculus. Springer: Berlin, Germany, 2015, ISBN 978-3-319-79809-7.
[2] P. Ostalczyk: Discrete Fractional Calculus: Applications in Control and Image Processing. World Scientific, 2016.
[3] K. Oprzedkiewicz and K. Dziedzic: Fractional discrete-continuous model of heat transfer process. Archives of Control Sciences, 31(2), (2021), 287– 306, DOI: 10.24425/acs.2021.137419.
[4] T. Kaczorek and A. Ruszewski: Global stability of discrete-time nonlinear systems with descriptor standard and fractional positive linear parts and scalar feedbacks. Archives of Control Sciences, 30(4), (2020), 667–681, DOI: 10.24425/acs.2020.135846.
[5] J.B. Diaz and T.J. Olser: Differences of fractional order. Mathematics of Computation, 28 (1974), 185–202, DOI: 10.1090/S0025-5718-1974-0346352-5.
[6] F.M. Atici and P.W. Eloe: A transform method in discrete fractional calculus. International Journal of Difference Equations, 2 (2007), 165–176.
[7] F.M. Atici and P.W. Eloe: Discrete fractional calculus with the nabla operator. Electronic Journal of Qualitative Theory of Differential Equations, Spec. Ed. I, 3 , (2009), 1–12.
[8] G. Anastassiou: Principles of delta fractional calculus on time scales and inequalities. Mathematical and Computer Modelling, 52(3-4), (2010), 556– 566, DOI: 10.1016/j.mcm.2010.03.055.
[9] T. Abdeljawad: On Riemann and Caputo fractional differences. Computers and Mathematics with Applications, 62(3), (2011), 1602–1611, DOI: 10.1016/j.camwa.2011.03.036.
[10] M. Edelman, E.E.N. Macau, and M.A.F. Sanjun (Eds.): Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Springer International Publishing, 2018.
[11] G.C. Wu, D. Baleanu, and S.D. Zeng: Discrete chaos in fractional sine and standard maps. Physics Letters A, 378(5-6), (2014), 484–487, DOI: 10.1016/j.physleta.2013.12.010.
[12] G.C. Wu and D. Baleanu: Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 75(1-2), (2014), 283–287, DOI: 10.1007/s11071-013-1065-7.
[13] T. Hu: Discrete chaos in fractional Henon map. Applied Mathematics, 5(15), (2014), 2243–2248, DOI: 10.4236/am.2014.515218.
[14] G.C. Wu and D. Baleanu: Discrete chaos in fractional delayed logistic maps. Nonlinear Dynamics, 80 (2015), 1697–1703, DOI: 10.1007/s11071-014-1250-3.
[15] M.K. Shukla and B.B. Sharma: Investigation of chaos in fractional order generalized hyperchaotic Henon map. International Journal of Electronics and Communications, 78 (2017), 265–273, DOI: 10.1016/j.aeue.2017.05.009.
[16] A. Ouannas, A.A. Khennaoui, S. Bendoukha, and G. Grassi: On the dynamics and control of a fractional form of the discrete double scroll. International Journal of Bifurcation and Chaos, 29(6), (2019), DOI: 10.1142/S0218127419500780.
[17] L. Jouini, A. Ouannas, A.A. Khennaoui, X. Wang, G. Grassi, and V.T. Pham: The fractional form of a new three-dimensional generalized Henon map. Advances in Difference Equations, 122 (2019), DOI: 10.1186/s13662-019-2064-x.
[18] F. Hadjabi, A. Ouannas,N. Shawagfeh, A.A. Khennaoui, and G. Grassi: On two-dimensional fractional chaotic maps with symmetries. Symmetry, 12(5), (2020), DOI: 10.3390/sym12050756.
[19] D. Baleanu, G.C. Wu, Y.R. Bai, and F.L. Chen: Stability analysis of Caputo-like discrete fractional systems. Communications in Nonlinear Science and Numerical Simulation, 48 (2017), 520–530, DOI: 10.1016/j.cnsns.2017.01.002.
[20] A-A. Khennaoui, A. Ouannas, S. Bendoukha, G. Grassi, X. Wang, V-T. Pham, and F.E. Alsaadi: Chaos, control, and synchronization in some fractional-order difference equations. Advances in Difference Equations, 412 (2019), DOI: 10.1186/s13662-019-2343-6.
[21] A. Ouannas, A.A. Khennaoui, G. Grassi, and S. Bendoukha: On chaos in the fractional-order Grassi-Miller map and its control. Journal of Computational and Applied Mathematics, 358(2019), 293–305, DOI: 10.1016/j.cam.2019.03.031.
[22] A. Ouannas, A.A. Khennaoui, S. Momani, G. Grassi and V.T. Pham: Chaos and control of a three-dimensional fractional order discrete-time system with no equilibrium and its synchronization. AIP Advances, 10 (2020), DOI: 10.1063/5.0004884.
[23] A. Ouannas, A-A. Khennaoui, S. Momani, G. Grassi, V-T. Pham, R. El- Khazali, and D. Vo Hoang: A quadratic fractional map without equilibria: Bifurcation, 0–1 test, complexity, entropy, and control. Electronics, 9 (2020), DOI: 10.3390/electronics9050748.
[24] A. Ouannas, A-A. Khennaoui, S. Bendoukha, Z.Wang, and V-T. Pham: The dynamics and control of the fractional forms of some rational chaotic maps. Journal of Systems Science and Complexity, 33 (2020), 584–603, DOI: 10.1007/s11424-020-8326-6.
[25] A-A. Khennaoui, A. Ouannas, S. Bendoukha, G. Grassi, R.P. Lozi, and V-T. Pham: On fractional-order discrete-time systems: Chaos, stabilization and synchronization. Chaos, Solitons and Fractals, 119(C), (2019), 150– 162, DOI: 10.1016/j.chaos.2018.12.019.
[26] A. Ouannas, A-A. Khennaoui, Z. Odibat, V-T. Pham, and G. Grassi: On the dynamics, control and synchronization of fractional-order Ikeda map. Chaos, Solitons and Fractals, 123(C), (2015), 108–115, DOI: 10.1016/j.chaos.2019.04.002.
[27] A. Ouannas, F. Mesdoui, S. Momani, I. Batiha, and G. Grassi: Synchronization of FitzHugh-Nagumo reaction-diffusion systems via onedimensional linear control law. Archives of Control Sciences, 31(2), 2021, 333–345, DOI: 10.24425/acs.2021.137421.
[28] Y. Li, C. Sun, H. Ling, A. Lu, and Y. Liu: Oligopolies price game in fractional order system. Chaos, Solitons and Fractals, 132(C), (2020), DOI: 10.1016/j.chaos.2019.109583.
[29] D. Mozyrska and E. Girejko: Overview of fractional h-difference operators. In Advances in harmonic analysis and operator theory. Birkhäuser, Basel, 2013, 253–268.
Go to article

Authors and Affiliations

A. Othman Almatroud
1
Adel Ouannas
2
Giuseppe Grassi
3
Iqbal M. Batiha
4
Ahlem Gasri
5
M. Mossa Al-Sawalha
1

  1. Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
  2. Department of Mathematics and Computer Science, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, Algeria
  3. Dipartimento Ingegneria Innovazione, Universita del Salento, 73100 Lecce, Italy
  4. Department of Mathematics, Faculty of Science and Information Technology, Irbid National University, Irbid, Jordan and Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, UAE
  5. Department of Mathematics, University of Larbi Tebessi, Tebessa 12002, Algeria
Download PDF Download RIS Download Bibtex

Abstract

We devise a tool-supported framework for achieving power-efficiency of data-flowhardware circuits. Our approach relies on formal control techniques, where the goal is to compute a strategy that can be used to drive a given model so that it satisfies a set of control objectives. More specifically, we give an algorithm that derives abstract behavioral models directly in a symbolic form from original designs described at Register-transfer Level using a Hardware Description Language, and for formulating suitable scheduling constraints and power-efficiency objectives. We show how a resulting strategy can be translated into a piece of synchronous circuit that, when paired with the original design, ensures the aforementioned objectives. We illustrate and validate our approach experimentally using various hardware designs and objectives.
Go to article

Bibliography

[1] P. Babighian, L. Benini, and E. Macii: A scalable algorithm for RTL insertion of gated clocks based onODCscomputation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(1), (2005), 29–42, DOI: 10.1109/TCAD.2004.839489.
[2] R. Bellman: Dynamic programming and stochastic control processes. Information and Control, 1(3), (1958), 228–239, DOI: 10.1016/S0019- 9958(58)80003-0.
[3] L. Benini, P. Siegel, and G. De Micheli: Saving power by synthesizing gated clocks for sequential circuits. IEEE Design & Test of Computers, 11(4), (1994), 32–41, DOI: 10.1109/54.329451.
[4] R. Bhutada and Y. Manoli: Complex clock gating with integrated clock gating logic cell. In 2007 International Conference on Design Technology of Integrated Systems in Nanoscale Era, (2007), 164–169, DOI: 10.1109/DTIS.2007.4449512.
[5] J. Billon: Perfect normal forms for discrete programs. Technical report, Bull, 1987.
[6] E.M. Clarke, E.A. Emerson, and A.P. Sistla: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2), (1986), 244– 263, DOI: 10.1145/5397.5399.
[7] E. Dumitrescu, A. Girault, H. Marchand, and E. Rutten: Multicriteria optimal reconfiguration of fault-tolerant real-time tasks. IFAC Proceedings Volumes, 43(12), (2010), 356–363, DOI: 10.3182/20100830-3-DE- 4013.00059.
[8] K. Gilles: The semantics of a simple language for parallel programming. Information Processing, 74 (1974), 471–475.
[9] E.A. Lee and T.M. Parks: Dataflow process networks. Proceedings of the IEEE, 83(5), (1995), 773–801, DOI: 10.1109/5.381846.
[10] H. Marchand and M.L. Borgne: On the optimal control of polynomial dynamical systems over z/pz. In 4th International Workshop on Discrete Event Systems, (1998), 385–390.
[11] H. Marchand, P. Bournai, M.L. Borgne, and P.L. Guernic: Synthesis of discrete-event controllers based on the signal environment. Discrete Event Dynamic System: Theory and Applications, 10(4), (2000), 325–346, DOI: 10.1023/A:1008311720696.
[12] S. Miremadi, B. Lennartson, and K. Akesson: A BDD-based approach for modeling plant and supervisor by extended finite automata. IEEE Transactions on Control Systems Technology, 20(6), (2012), 1421–1435, DOI: 10.1109/TCST.2011.2167150.
[13] M. Özbaltan: Achieving Power Efficiency in Hardware Circuits with Symbolic Discrete Control. PhD thesis, University of Liverpool, 2020.
[14] M. Özbaltan and N. Berthier: Exercising symbolic discrete control for designing low-power hardware circuits: an application to clock-gating. IFAC-PapersOnLine, 51(7), (2018), 120–126, DOI: 10.1016/j.ifacol.2018.06.289.
[15] M. Özbaltan and N. Berthier: A case for symbolic limited optimal discrete control: Energy management in reactive data-flow circuits. IFAC-PapersOnLine, 53(2), (2020), 10688–10694, DOI: 10.1016/j.ifacol. 2020.12.2842.
[16] M. Pedram and Q.Wu: Design considerations for battery-powered electronics. In Proceedings 1999 Design Automation Conference, (1999), 861–866, DOI: 10.1109/DAC.1999.782166.
[17] N. Raghavan, V. Akella, and S. Bakshi: Automatic insertion of gated clocks at register transfer level. In Proceedings of the 12th International Conference on VLSI Design, (1999), 48–54, DOI: 10.1109/ICVD.1999.745123.
[18] P. Ramadge and W. Wonham: The control of discrete event systems. Proceedings of the IEEE, 77(1), (1989), 81–98, DOI: 10.1109/5.21072.
[19] S. Tripakis, R. Limaye, K. Ravindran, G. Wang, H. Andrade, and A. Ghosal: Tokens vs. signals: On conformance between formal models of dataflow and hardware. Journal of Signal Processing Systems, 85(1), (2016), 23–43, DOI: 10.1007/s11265-015-0971-y.
Go to article

Authors and Affiliations

Mete Özbaltan
1
Nicolas Berthier
2

  1. Erzurum Technical University, Erzurum, Turkey
  2. University of Liverpool, Liverpool, England
Download PDF Download RIS Download Bibtex

Abstract

The article introduces an innovative approch for the inspection challenge that represents a generalization of the classical Traveling Salesman Problem. Its priciple idea is to visit continuous areas (circles) in a way, that minimizes travelled distance. In practice, the problem can be defined as an issue of scheduling unmanned aerial vehicle which has discrete-continuous nature. In order to solve this problem the use of local search algorithms is proposed.

Go to article

Authors and Affiliations

Radosław Grymin
Wojciech Bożejko
Zenon Chaczko
Jarosław Pempera
Mieczysław Wodecki
Download PDF Download RIS Download Bibtex

Abstract

With the rapid advancement of digital processors, filters have been commonly implemented using microcomputers. In this study, a low-cost and compact Arduino Uno development board was used to realize digital lead and lag compensators. Arduino boards are very affordable. Consequently, they were investigated to see if they were capable of preserving the frequency response of continuous-time compensators. The experiments required a set of equipment including a function generator, an Arduino Uno development board, a PC-based oscilloscope, and a laptop. The signal frequency was varied from 0 to 500 Hz. Two discretization methods were employed, namely bilinear transformation and matched pole-zero mapping. The results showed that an Arduino Uno board can be utilized to implement lead and lag compensators to some extent. The discrete-time compensator preserved the capability of filtering out certain frequencies. The change in DC gain was negligible, however, there was a significant difference in the cut-off frequency and transient slope. For both discretization methods, the frequency responses at high frequency experienced a rippling profile.

Go to article

Authors and Affiliations

Gunawan Dewantoro
Irwin Shauma Rizky
Budihardja Murtianta
Download PDF Download RIS Download Bibtex

Abstract

With the increasing uses of internet technologies in daily life, vulnerability of personal data/information is also increasing. Performing secure communication over the channel which is insecure has always been a problem because of speedy development of various technologies. Encryption scheme provides secrecy to data by enabling only authorized user to access it. In the proposed paper, we present an encryption algorithm designed for data security based on bilinear mapping and prove it secure by providing its security theoretical proof against adaptive chosen cipher-text attack. With the help of a lemma, we have shown that no polynomially bounded adversary has non-negligible advantage in the challenging game. We also give the comparative analysis of the proposed scheme in terms of security and performance with Deng et al., 2020 and Jiang et al., 2021 schemes and prove that proposed algorithm is more efficient and secure than others existing in literature against adaptive chosen cipher-text attack.
Go to article

Authors and Affiliations

Vandani Verma
1
Pragya Mishra
1

  1. Amity Institute of Applied Sciences, Amity University, Noida-125 (Uttar Pradesh), India
Download PDF Download RIS Download Bibtex

Abstract

This paper is devoted to some problems that appear in derivations of the discrete time Fourier transform from a formula for its continuous time counterpart for transformation from the time into the frequency domain as well as to those regarding transformation in the inverse direction. In particular, the latter ones remained so far an unresolved problem. It is solved for the first time here. Many detailed explanations accompanying the solution found are presented. Finally, it is also worth noting that our derivations do not exploit any of such sophisticated mathematical tools as the so-called Dirac delta and Dirac comb.

Go to article

Authors and Affiliations

Andrzej Borys
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper considers developed and offered an effective algorithm for solving the block-symmetrical tasks of polynomial computational complexity of data processing modular block-schemes designing. Currently, there are a large number of technologies and tools that allow you to create information systems of any class and purpose. To solve the problems of designing effective information systems, various models and methods are used, in particular, mathematical discrete programming methods. At the same time, it is known that such tasks have exponential computational complexity and can not always be used to solve practical problems. In this regard, there is a need to develop models and methods of the new class, which provide the solution of applied problems of discrete programming, aimed at solving problems of large dimensions. The work has developed and proposed block-symmetric models and methods as a new class of discrete programming problems that allow us to set and solve applied problems from various spheres of human activity. The issues of using the developed models are considered. and methods for computer-aided design of information systems (IS).

Go to article

Authors and Affiliations

Waldemar Wojcik
Aliya Kalizhanova
Sultan Akhmetov
Gulnaz Nabiyeva
Ainur Kozbakova
Download PDF Download RIS Download Bibtex

Abstract

Tuning rules for PID and PI-PI servo controllers are developed using a pole placement approach with a multiple pole, i.e. a triple one in the case of PID and a quadruple for PI-PI. The controllers involve complex roots in the numerators of the transfer functions. This is not possible in the classical P-PI structure which admits real roots only. The settling time of the servos determined by the multiple time constant is the only design parameter. Nomograms to read out discrete controller settings in terms of the time constant and control cycle are given. As compared to the classical structures, the upper limit on the control cycle is now twice longer in the case of PID, and four times in the case of PI-PI. This implies that the settling times can be shortened by the same ratios. Responses of a PLC-controlled servo confirm the validity of the design.
Go to article

Bibliography

  1.  B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics. Berlin Heidelberg: Springer, 2008.
  2.  G. Ellis, Ed., Control System Design Guide, 4th ed. ButterworthHeinemann, 2012.
  3.  G.W. Younkin, Industrial Servo Control Systems, 2nd ed. New York: Marcel Dekker, 2002.
  4.  S.-M. Yang and K.-W. Lin, “Automatic Control Loop Tuning for Permanent-Magnet AC Servo Motor Drives,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1499–1506, 2016.
  5.  G.F. Franklin, J.D. Powell, and A.F. Emami-Naeini, Feedback Control of Dynamic Systems, 7th ed. Reading: Addison-Wesley, 2019.
  6.  L. Sciavicco and B. Siciliano, Modelling and Control of Robot Manipulators. London: Springer, 2000.
  7.  T. Tarczewski, M. Skiwski, L.J. Niewiara, and L.M. Grzesiak, “High-performance PMSM servo-drive with constrained state feedback position controller,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, pp. 49–58, 2018.
  8.  V. Rao and D. Bernstein, “Naive control of the double integrator,” IEEE Control Syst. Mag., vol. 21, pp. 86–97, 2001.
  9.  P.B. Schmidt and R.D. Lorenz, “Design principles and implementation of acceleration feedback to improve performance of DC drives,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 594–599, 1992.
  10.  T. Żabiński and L. Trybus, “Tuning P-PI and PI-PI controllers for electrical servos,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, pp. 51–58, 2010.
  11.  D.E. Seborg, T.F. Edgar, D.A. Mellichamp, and F.J. Doyle, Process Dynamics and Control, 4th ed. New York: Wiley, 2016.
  12.  C. Grimholt and S. Skogestad, “Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules,” J. Process Control, vol. 70, pp. 36–46, 2018.
  13.  K.J. Åström and T. Hägglund, Advanced PID Control, Research Triangle Park, 2005.
  14.  “Maxima CAS homepage.” [Online]. Available: https://maxima.sourceforge.io/.
  15.  “ESTUN Industrial Technology Europe.” [Online]. Available: https://www.estuneurope.eu/.
  16.  “BECKHOFF New Automation Technology.” [Online]. Available: https://www.beckhoff.com/.
  17. EN 61131-3, Programmable controllers – Part 3: Programming languages (IEC 61131-3:2013), International Standard, CENELEC Std., 2013.
Go to article

Authors and Affiliations

Andrzej Bożek
1
ORCID: ORCID
Leszek Trybus
1
ORCID: ORCID

  1. Department of Computer and Control Engineering, Rzeszów University of Technology, W. Pola 2, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the process of identifying discrete-continuous models with the use of heuristic algorithms. A stepped cantilever beam was used as an example of a discrete-continuous model. The theoretical model was developed based on the formalism of Lagrange multipliers and the Timoshenko theory. Based on experimental research, the theoretical model was validated and the optimization problem was formulated. Optimizations were made for two algorithms: genetic (GA) and particle swarm (PSO). The minimization of the relative error of the obtained experimental and numerical results was used as the objective function. The performed process of identifying the theoretical model can be used to determine the eigenfrequencies of models without the need to conduct experimental tests. The presented methodology regarding the parameter identification of the beams with the variable cross-sectional area (according to the Timosheno theory) with additional discrete components allows us to solve similar problems without the need to exit complex patterns.
Go to article

Bibliography

  1.  D. Cekus, B. Posiadała, and P. Warys, “Integration of modeling in SolidWorks and Matlab/Simulink environments,” Arch. Mech. Eng., vol. 61, no. 1, pp. 57–74, 2014, doi: 10.2478/meceng-2014-0003.
  2.  K. Kuliński and J. Przybylski, “Stability and vibrations control of a stepped beam using piezoelectric actuation,” MATEC Web Conf., vol. 157, p. 08004, 2018, doi: 10.1051/matecconf/201815708004.
  3.  S.A. Moezi, E. Zakeri, A. Zare, and M. Nedaei, “On the application of modified cuckoo optimization algorithm to the crack detection problem of cantilever Euler–Bernoulli beam,” Comput. Struct., vol. 157, pp. 42–50, 2015, doi: 10.1016/j.compstruc.2015.05.008.
  4.  P.K. Jena and D.R. Parhi, “A modified particle swarm optimization technique for crack detection in cantilever beams,” Arabian J. Sci Eng., vol. 40, no. 11, pp. 3263–3272, 2015, doi: 10.1007/s13369-015-1661-6.
  5.  X.-L. Li, R. Serra, and O. Julien, “Effects of the Particle Swarm Optimization parameters for structural dynamic monitoring of cantilever beam,” in Surveillance, Vishno and AVE conferences. Lyon, France: INSA-Lyon, Université de Lyon, 2019. Available: https://hal.archives-ouvertes. fr/hal-02188562.
  6.  S. Das, S. Mondal, and S. Guchhait, “Particle swarm optimization-based characterization technique of nonproportional viscous damping parameter of a cantilever beam,” J. Vib. Control, p. 107754632110105, 2021, doi: 10.1177/10775463211010526.
  7.  J. Zolfaghari, “Optimization of dynamic response of cantilever beam by genetic algorithm,” in Nonlinear Approaches in Engineering Applications. Springer International Publishing, 2019, pp. 403–448, doi: 10.1007/978-3-030-18963-1_10.
  8.  M.A. Wahab, I. Belaidi, T. Khatir, A. Hamrani, Y.-L. Zhou, and M.A. Wahab, “Multiple damage detection in composite beams using particle swarm optimization and genetic algorithm,” Mechanics, vol. 23, no. 4, 2017, doi: 10.5755/j01.mech.23.4.15254.
  9.  Z. Xia, K. Mao, S. Wei, X. Wang, Y. Fang, and S. Yang, “Application of genetic algorithm-support vector regression model to predict damping of cantilever beam with particle damper,” J. Low Freq. Noise Vibr. Act. Control, vol. 36, no. 2, pp. 138–147, 2017, doi: 10.1177/0263092317711987.
  10.  M. Friswell and J. Mottershead, Finite Element Model Updating in Structural Dynamics, Springer, Dordrecht, 1995.
  11.  S. Garus and W. Sochacki, “Structure optimization of quasi one-dimensional acoustic filters with the use of a genetic algorithm,” Wave Motion, vol. 98, p. 102645, 2020, doi: 10.1016/j.wavemoti.2020.102645.
  12.  S. Mirjalili, “Genetic algorithm,” in Studies in Computational Intelligence. Springer, Cham, 2018, pp. 43–55, doi: 10.1007/978-3-319-93025-1_4.
  13.  W. Sochacki, J. Garus, J. Szmidla, M. Nabiałek, K. Błoch, P. Kwiatoń, B. Jeż, K. Jeż, and S. Garus, “Designing two-band mechanical wave filters using genetic algorithm,” Acta Phys. Pol. A, vol. 139, no. 5, pp. 479–482, May 2021, doi: 10.12693/aphyspola.139.479.
  14.  J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 – International Conference on Neural Networks. IEEE, 1995, doi: 10.1109/icnn.1995.488968.
  15.  D. Skrobek and D. Cekus, “Optimization of the operation of the anthropomorphic manipulator in a three-dimensional working space,” Eng. Optim., vol. 51, no. 11, pp. 1997–2010, 2019, doi: 10.1080/0305215x.2018.1564919.
  16.  P. Dziwiński, Ł. Bartczuk, and J. Paszkowski, “A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm,” J. Artif. Intell. Soft Comput. Res., vol. 10, no. 2, pp. 95– 111, Mar. 2020, doi: 10.2478/jaiscr-2020-0007.
  17.  S. Timoshenko, “On the transverse vibrations of bars of uniform cross section,” Philos. Mag., vol. 43, no. 253, pp. 125–131, Jan. 1922, doi: 10.1080/14786442208633855.
  18.  W. Sochacki, “The dynamic stability of a stepped cantilever beam with attachments,” J. Vibroeng., vol. 15, no. 1, pp. 280– 290, 2013.
  19.  M.H. Korayem and A. Nahavandi, “Analyzing the effect of the forces exerted on cantilever probe tip of atomic force microscope with tapering- shaped geometry and double piezoelectric extended layers in the air and liquid environments,” J. Sound Vib., vol. 386, pp. 251–264, 2017, doi: 10.1016/j.jsv.2016. 08.031.
  20.  B. Posiadała, “Use of lagrange multiplier formalism to analyze free vibrations of combined dynamical systems,” J. Sound Vib., vol. 176, no. 4, pp. 563–572, Sep. 1994, doi: 10.1006/jsvi.1994.1396.
  21.  R. Pytlarz, “Experimental modal analysis of the beam with the help of non-contact vibration measurement method,” Master’s thesis, Czestochowa University of Technology, Częstochowa, 2008.
  22.  Z. Abo-Hammour, O.A. Arqub, O. Alsmadi, S. Momani, and A. Alsaedi, “An optimization algorithm for solving systems of singular boundary value problems,” Appl. Math. Inf. Sci., vol. 8, no. 6, pp. 2809–2821, 2014, doi: 10.12785/amis/080617.
  23.  I. Rejer, “Classic genetic algorithm vs. genetic algorithm with aggressive mutation for feature selection for a brain-computer interface,” Przegląd Elektrotechniczny, vol. 1, no. 2, pp. 100–104, 2015, doi: 10.15199/48.2015.02.24.
  24.  M. Nikoo, M. Hadzima-Nyarko, E.K. Nyarko, and M. Nikoo, “Determining the natural frequency of cantilever beams using ANN and heuristic search,” Appl. Artif. Intell, vol. 32, no. 3, pp. 309–334, Mar. 2018, doi: 10.1080/08839514.2018.1448003.
  25.  A. Mayer, “A genetic algorithm with randomly shifted gray codes and local optimizations based on quadratic approximations of the fitness,” in Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM, 2017, doi: 10.1145/3067695.3075968.
  26.  B. Ufnalski and L. Grzesiak, “Particle swarm optimization of artificial-neural-network-based on-line trained speed controller for battery electric vehicle,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 3, pp. 661–667, 2012, doi: 10.2478/v10175-0120059-9.
  27.  M. Szczepanik and T. Burczyński, “Swarm optimization of stiffeners locations in 2-d structures,” Bull. Pol. Acad. Sci. Tech. Sci.,, vol. 60, no. 2, pp. 241–246, 2012, doi: 10.2478/v10175012-0032-7.
  28.  J.C. Bansal, “Particle swarm optimization,” in Studies in Computational Intelligence. Springer, Cham, 2018, pp. 11–23, doi: 10.1007/978-3- 319-91341-4_2.
  29.  D. Cekus and P. Warys, “Identification of parameters of discretecontinuous models,” in AIP Conference Proceedings. AIP Publishing LLC, 2015, doi: 10.1063/1.4913110.
  30.  D. Cekus and D. Skrobek, “The influence of inertia weight on the particle swarm optimization algorithm,” J. Appl. Math. Comput. Mech., vol. 17, no. 4, pp. 5–11, Dec. 2018, doi: 10.17512/jamcm.2018.4.01.
  31.  A.R. Jordehi and J. Jasni, “Parameter selection in particle swarm optimisation: a survey,” J. Exp. Theor. Artif. Intell., vol. 25, no. 4, pp. 527–542, Dec. 2013, doi: 10.1080/0952813x.2013.782348.
Go to article

Authors and Affiliations

Dawid Cekus
1
ORCID: ORCID
Paweł Kwiatoń
1
ORCID: ORCID
Michal Šofer
2
ORCID: ORCID
Pavel Šofer
3
ORCID: ORCID

  1. Department of Mechanics and Machine Design Fundamentals, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, 42-201 Częstochowa, Poland
  2. Department of Applied Mechanics, Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic
  3. Department of Control Systems and Instrumentation, Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2127, 708 33 Ostrava-Poruba, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The problem of performing software tests using Testing-as-a-Service cloud environment is considered and formulated as an~online cluster scheduling on parallel machines with total flowtime criterion. A mathematical model is proposed. Several properties of the problem, including solution feasibility and connection to the classic scheduling on parallel machines are discussed. A family of algorithms based on a new priority rule called the Smallest Remaining Load (SRL) is proposed. We prove that algorithms from that family are not competitive relative to each other. Computer experiment using real-life data indicated that the SRL algorithm using the longest job sub-strategy is the best in performance. This algorithm is then compared with the Simulated Annealing metaheuristic. Results indicate that the metaheuristic rarely outperforms the SRL algorithm, obtaining worse results most of the time, which is counter-intuitive for a metaheuristic. Finally, we test the accuracy of prediction of processing times of jobs. The results indicate high (91.4%) accuracy for predicting processing times of test cases and even higher (98.7%) for prediction of remaining load of test suites. Results also show that schedules obtained through prediction are stable (coefficient of variation is 0.2‒3.7%) and do not affect most of the algorithms (around 1% difference in flowtime), proving the considered problem is semi-clairvoyant. For the Largest Remaining Load rule, the predicted values tend to perform better than the actual values. The use of predicted values affects the SRL algorithm the most (up to 15% flowtime increase), but it still outperforms other algorithms.

Go to article

Authors and Affiliations

J. Rudy
C. Smutnicki
Download PDF Download RIS Download Bibtex

Abstract

The paper demonstrates the potential of wavelet transform in a discrete form for structural damage localization. The efficiency of the method is tested through a series of numerical examples, where the real flat truss girder is simulated by a parameterized finite element model. The welded joints are introduced into the girder and classic code loads are applied. The static vertical deflections and rotation angles of steel truss structure are taken into consideration, structural response signals are computed at discrete points uniformly distributed along the upper or lower chord. Signal decomposition is performed according to the Mallat pyramid algorithm. The performed analyses proved that the application of DWT to decompose structural response signals is very effective in determining the location of the defect. Evident disturbances of the transformed signals, including high peaks, are expected as an indicator of the defect existence in the structure. The authors succeeded for the first time in the detection of breaking the weld in the truss node as well as proved that the defect can be located in the diagonals.
Go to article

Authors and Affiliations

Anna Knitter-Piątkowska
1
ORCID: ORCID
Olga Kawa
1
Michał Jan Guminiak
1

  1. Poznan University of Technology, Institute of Structural Analysis, Poland
Download PDF Download RIS Download Bibtex

Abstract

Necessary and sufficient conditions for the pointwise completeness and the pointwise degeneracy of linear discrete-time different fractional order systems are established. It is shown that if the fractional system is pointwise complete in one step (q = 1), then it is also pointwise complete for q = 2, 3…

Go to article

Authors and Affiliations

T. Kaczorek
Ł. Sajewski
Download PDF Download RIS Download Bibtex

Abstract

The rheological property of asphalt is an important factor affecting the pavement performance of asphalt binder, and the fundamental reason for the change of asphalt rheological property is the strong evolution of asphalt material meso structure. However, the internal mechanism of rejuvenated asphalt mastic system is complex and its rules are difficult to grasp. Aiming to study the relationship between meso mechanical parameters and rheological parameters of rejuvenated asphalt mastic, the meso structure model of rejuvenated asphalt mastic was established and improved based on the discrete element method. Moreover, the meso parameters of the model were obtained by the objective function method, and then the influences of various factorswere studied to construct the mathematical constitutive model of rheological parameter modulus and meso mechanical parameters. Combing with the reliability of the improved Burgers model was verified based on the rheological test results of rejuvenated asphalt mastic. In addition, the virtual test of dynamic shear rheological dynamic frequency scanning was carried out on the asphalt mastic sample by particle flow software. By adjusting the mesomechanical parameters, the simulation results (complex shear modulus and phase angle)were consistent with the test results. This study clarified the relationship between mesomechanics and macro performance, and this model could be used to obtain the complex shear modulus of rejuvenated asphalt mastic under different types, filler-asphalt ratio and external force environments by adjusting particle flow, wall boundary and other conditions, which can greatly save the workload for the later research and provide a theoretical basis for production experiments.
Go to article

Authors and Affiliations

Mei Lin
1
Yu Lei
1
Ping Li
1
Jun Shuai
1
Zhaoli Wang
2

  1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
  2. Gansu Road and Bridge Green Smart Construction Technology Industry Research Institute, Lanzhou, 730030, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of determining the load of a model tunnel lining in a noncohesive soil medium at two different heights of soil backfill above the structure. A series of simulations were performed with the flexible and rigid tunnel lining. The analysis was performed by conducting simulations with the use of an author’s program based on the discrete element method. The model previously calibrated on the basis of laboratory tests was used. The loads acting on the structure, the distribution of stresses in the surrounding soil medium and the displacements of this medium in the vicinity of the structure were determined and compared. The effect of soil weight and technological load applied from the surface was taken into account. The values of the numerically obtained loads of the tunnel lining were compared with those calculated according to the classic Hewett’s method.
It has been proven that in both cases the degree of cooperation between the structure and soil is significantly related to the rigidity of the structure, hence the loads determined may differ significantly from the results obtained according to classical methods. It was shown that discrete modelling allows to reflect differences in the behaviour of the soil medium resulting from different heights of soil backfill. Smaller horizontal pressure was obtained in the side zones of an excavation at a higher backfill. In addition, significantly greater intensity of vertical soil displacements over the lining were observed with a lower backfill height.
Go to article

Authors and Affiliations

Paweł Szklennik
1
ORCID: ORCID

  1. Military University of Technology, Faculty of Civil Engineering and Geodesy, ul. Gen. Sylwestra Kaliskiego 2 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of eliminating the tonal component of an acoustic signal. The tonal component is approximated by a sinusoidal signal of a given amplitude and frequency. As the parameters of this component: amplitude, frequency and initial phase may be variable, it is important to detect these parameters in subsequent analysis time intervals (frames). If the detection of the parameters is correct, the elimination consists in adding a sinusoidal component with the detected amplitude and frequency to the signal, but the phase shifted by 180 degrees. The accuracy of the reduction depends on the accuracy of parameters detection and their changes.
Detection takes place using the Discrete Fourier Transform, whose length is changed to match the spectrum resolution to the signal frequency. The operation for various methods of synthesis of the compensating signal as well as various window functions were checked. An elimination simulation was performed to analyze the effectiveness of the reduction. The result of the paper is the assessment of the method in narrowband active noise control systems. The method was tested by simulation and then experimentally with real acoustic signals. The level of reduction was from 6.9 to 31.5 dB.

Go to article

Bibliography

1. Dabrowski Z., Stankiewicz B. (2013), Methodology of selecting the reference source for an active noise control system in a car, International Journal of Occupational Safety and Ergonomics, 19(1): 117–125, doi: 10.1080/10803548.2013.11076971.
2. Dabrowski Z., Dziurdz J., Górnicka D. (2017), Utilisation of the coherence analysis in acoustic diagnostics of internal combustion engines, Archives of Acoustics, 42(3): 475–481, doi: 10.1515/aoa-2017-0050.
3. Górski P., Morzynski L. (2013), Active noise reduction algorithm based on NOTCH filter and genetic algorithm, Archives of Acoustics, 38(2): 185–190, doi: 10.2478/aoa-2013-0021.
4. ISO 1996-2:2017 (2017), Acoustics – Description, measurement and assessment of environmental noise – Part 2: Determination of sound pressure levels, International Organization for Standardization, Geneva, Switzerland.
5. Kuo S.M., Tahernezhadi M., Ji L. (1997), Frequency- domain periodic active noise control and equalization, IEEE Transactions on Speech and Audio Processing, 5(4): 348–358, doi: 10.1109/89.593309.
6. Kim S., Park Y. (1999), Active control of multi-tonal noise with reference generator based on on-line frequency estimation, Journal of Sound and Vibration, 227(3): 647–666, doi: 10.1006/jsvi.1999.2383.
7. Łuczynski M. (2017), Analysis of the influence of amplitude, frequency and phase errors on effectiveness of noise reduction of multitone signals by active noise cancelling systems, [in:] Postepy akustyki =Advances in Acoustics 2017, Bismor D. [Ed.], pp. 61– 67, Gliwice: Polskie Towarzystwo Akustyczne, Oddział Górnoslaski, doi: 10.1515/aoa-2017-0059.
8. Łuczynski M. (2018), Normal to whisper speech conversion using active tone cancellation – case study, [in:] Postepy akustyki =Advances in acoustics 2018, Marszal J. [Ed.], pp. 62–66, Gdansk: Polskie Towarzystwo Akustyczne, Oddział Gdanski.
9. Łuczynski M. (2019a), Classes of tonality of signals in the aspect of active elimination of tonal components, Vibrations in Physical Systems, 30(1): Article ID 2019126.
10. Łuczynski M. (2019b), Primary study on removing mains hum from recordings by active tone cancellation algorithms, [in:] 146th Convention Audio Engineering Society, March 20–23, 2019 Dublin, Ireland, Convention paper No. 10147, http://www.aes.org/elib/ browse.cfm?elib=20280.
11. Łuczynski M., Brachmanski S. (2017), Mathematical Model of the Acoustic Signal Generated by the Combustion Engine, [in:] 142nd Convention Audio Engineering Society, May 20–23, 2017, Berlin, Germany, Convention paper No. 9717, http://www.aes.org/elib/ browse.cfm?elib=18595.
12. Pawełczyk M. (2008), Active noise control – a review of control-related problems (plenary paper), [in:] 55th Open Seminar on Acoustics, Wrocław–Piechowice 8– 12.09.2008, pp. 65–74.
13. Qiu X., Hansen C.H. (2000), An algorithm for active control of transformer noise with online cancellation path modelling based on perturbation method, Journal of Sound and Vibration, 240(4): 647–665, doi: 10.1006/jsvi.2000.3256.
14. Qiu X., Li X., Ai Y., Hansen C.H. (2002), A waveform synthesis algorithm for active control of transformer noise: implementation, Applied Acoustics, 63(5): 467– 479, doi: 10.1016/S0003-682X(01)00060-3.
15. Rocha R.D. (2014), A Frequency-Domain Method for Active Acoustic Cancellation of Known Audio Sources, A Master Thesis, Faculty of California Polytechnic State University, San Louis Obispo, June 2014, https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi? article=2331&context=theses.
16. Rout N.K., Das D.P., Panda G. (2019), PSO based adaptive narrowband ANC algorithm without the use of synchronization signal and secondary path estimate, Mechanical Systems and Signal Processing, 114: 378– 398, doi: 10.1016/j.ymssp.2018.05.018.
17. Ueda T., Fujii K., Hirobayashi S., Yoshizawa T., Misawa T. (2013), Motion analysis using 3D highresolution frequency analysis, IEEE Transactions on Image Processing, 22(8): 2946–2959, doi: 10.1109/TIP.2012.2228490.
18. Wang J., Huang L., Cheng L. (2005), A study of active tonal noise control for a small axial flow fan, The Journal of the Acoustical Society of America, 117(2): 734–743, doi: 10.1121/1.1848072.
19. Xiao Y., Ma L., Hasegawa K. (2009), Properties of FXLMS-based narrowband active noise control with online secondary-path modeling, IEEE Transactions on Signal Processing, 57(8): 2931–2949, doi: 10.1109/TSP.2009.2020766.
20. Yoshizawa T., Hirobayashi S., Misawa T. (2011), Noise reduction for periodic signals using high resolution frequency analysis, Journal on Audio, Speech, and Music Processing, 2011: 5, doi: 10.1186/1687-4722-2011-426794.
21. Zhang L., Tao J., Qiu X. (2012), Active control of transformer noise with an internally synthesized reference signal, Journal of Sound and Vibration, 331(15): 3466–3475, doi: 10.1016/j.jsv.2012.03.032.
22. Zivanovic M., Roebel A., Rodet X. (2004), A new approach to spectral peak classification, [In:] Proceedings of the 12th European Signal Processing Conference (EUSIPCO), pp. 1277–1280, https://hal.archives-ouvertes.fr/hal-01161188.

Go to article

Authors and Affiliations

Michał Łuczyński
1
Andrzej Dobrucki
1
Stefan Brachmański
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Chair of Acoustics and Multimedia, Wroclaw, Poland

This page uses 'cookies'. Learn more