Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study investigates several factors that have not been specified in the standard for dynamic stiffness, compressibility, and long-term deformation; these factors can be used to evaluate the acoustic and physical performances of resilient materials. The study is intended to provide basic data for deriving the factors that need to be additionally reviewed through the standards. Since magnitude of dynamic stiffness changes with an increase in loading time, it is necessary to examine the setting of the loading time for a load plate under test conditions. Samples of size 300×300 mm, rather than 200×200 mm, yielded more reliable results for compressibility measurement. Since the test to infer long-term deformation of resilient materials after a period of 10 years in some samples showed variation characteristics different from those specified in the standards, it is recommended that the test method should be reviewed through ongoing research.
Go to article

Authors and Affiliations

Kyoung-Woo Kim
Jun-Oh Yeon
Kwan-Seop Yang
Myung-Jun Kim
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the problem of the accuracy of the identification techniques detecting cracks and corroded members in vibrating beam and frame structures. The presence of the fatigue crack usually causes very small changes of the stiffness of the beam elements of the structure. To detect these changes it is necessary to apply the most precisely mathematical detection technique. The identification procedure based on the least squares technique uses finite element models (FEM) of the structure and as the source of information the measured dynamic response and the natural frequencies. The application of the Dynamic Stiffness Matrix (DSM) [I) for the representation of all constraints and modal equations makes it possible to present the identification process in a very accurate and efficient mathematical form. The methoyof d of the detection of structural changes used in the present paper was described in our previous paper (2). The Consistent Mass Matrices (CMM) and Lump Mass Matrices (LMM) are very often used in the identification algorithms. It is shown that application of simplified approaches (CMM and LMM) can result in lower accuracy and poorer convergence of the identification algorithms. However, the application ofCMM mass matrices does not introduce significant errors. The algorithms were tested on simulated numerical data for ten element beam frames.
Go to article

Authors and Affiliations

Stanisław A. Lukasiewicz
Emily R. Qian

This page uses 'cookies'. Learn more