Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 53
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article describes selected issues falling within the scope of the technical analysis of a detached building’s heating system with a direct evaporation ground source heat pump installation. This paper covers the characteristics of modernized facility as well as calculations to determine the heat demand. What is more, the article describes the manner in which heat pumps shall be selected, its installation components as well as the receiving installation.
Go to article

Authors and Affiliations

Karol Tucki
Michał Sikora
Magdalena Karlikowska
Wojciech Będkowski
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the article is to present perspectives for the development of offshore wind farms in the leading, in this respect, country in the EU and in the world – Great Britain. Wind power plays a remarkable role in the process of ensuring energy security for Europe since in 2016 the produced wind energy met 10.4% of the European electricity demand while in 2017 it was already around 11.6%. The article analyses the capacity of wind farms, support systems offered by this country and the criteria related to the location of offshore wind farms. The research has been based on the analysis of legal acts, regulations, literature on the subject, information from websites. The article shows that in recent years, the production of energy at sea has been developing very rapidly, and the leading, in this matter, British offshore energy sector is character-ised by strong governmental support.

Go to article

Authors and Affiliations

Leszek Dawid
Download PDF Download RIS Download Bibtex

Abstract

The constant increase in the popularity of renewable energy systems allows residential building users to apply solutions leading to the diversification of the energy supply. The use of RES systems in residential buildings not only contributes to a higher level of environmental care, but also significantly and measurably improves the energy efficiency of the facility. Using hybrid systems allows the supply to be reduced or eliminated from conventional energy sources. The article presents common layouts of renewable energy systems, which are successfully used in residential buildings. It also shows the impact of such systems on the amount of savings achieved in the use of energy from external or conventional sources. In residential buildings, the possibility of energy generation in the form of electricity and heat is dependent on many factors that determine the type and size of the systems used to obtain energy from renewable sources. We should assume the further and continuous development of RES, which will increase the share of electricity and heat produced in households. Technological development, decreasing prices of equipment and components used for the installation of green electricity generation systems will be a conducive factor for increasing the popularity of RES systems, not only for residential buildings but also for other types of buildings. The article also points out the economic aspect of the RES systems application. It presents the positive impact of RES installations on the environment and estimates the average time of financial reimbursement. The economic analysis concerns individual systems of renewable energy systems used in residential buildings.

Go to article

Authors and Affiliations

Sławomir Sowa
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of the influence of the energy generated from renewable sources on an improvement in the energy efficiency of public utility building and households. It also presents the current state of the technologies for the production of electricity from renewable sources, as well as their share in the national power supply system. The conducted analysis concerns both micro, as well as large systems generating electricity. Systems generating power from renewable sources are gaining in popularity. With an increasing awareness in the society of the beneficial influence that renewable power generating systems have on the environment, as well as the support in form of various programs offering subsidies for the construction of new systems, power generation from renewable sources is becoming increasingly popular and common. Although the renewable energy systems are still not widely considered to be a profitable solution, systems using renewable sources of energy are positively perceived and treated as a new trend in the construction of multi or single-family residential buildings. The increasing share of the renewable energy in the national power supply system significantly reduces the demand for energy produced from conventional sources. This obviously translates into a reduced consumption of primary energy, for example, fossil fuels, and, in turn, leads to the reduced exploitation of natural resources, thus contributing to the protection of the natural environment. A reduced consumption of fossil fuels also means a significant reduction in environmental pollution during their processing into electricity or heat. Actions aiming at improving energy efficiency and reducing final energy consumption are being undertaken by many countries all over the world, and by the European Union. In 2012, the European Parliament and the Council issued Directive 2012/27/EU obliging the Member States to initiate actions aiming at a reduction in the consumption of final energy by 1.5% a year. The paper presents the current status of generation of energy from renewable sources during the last 13 years. The ways for using energy from the renewable sources to improve the energy efficiency of facilities were also discussed.

Go to article

Authors and Affiliations

Sławomir Sowa
Download PDF Download RIS Download Bibtex

Abstract

The optimal energy management (OEM) in a stand-alone microgrid (SMG) is a challenging job because of uncertain and intermittent behavior of clean energy sources (CESs) such as a photovoltaic (PV), wind turbine (WT). This paper presents the effective role of battery energy storage (BES) in optimal scheduling of generation sources to fulfill the load demand in an SMG under the intermittency of theWT and PV power. The OEM is performed by minimizing the operational cost of the SMG for the chosen moderate weather profile using an artificial bee colony algorithm (ABC) in four different cases, i.e. without the BES and with the BES having a various level of initial capacity. The results show the efficient role of the BES in keeping the reliability of the SMG with the reduction in carbon-emissions and uncertainty of the CES power. Also, prove that the ABC provides better cost values compared to particle swarm optimization (PSO) and a genetic algorithm (GA). Further, the robustness of system reliability using the BES is tested for the mean data of the considered weather profile.

Go to article

Authors and Affiliations

Navin Kumar Paliwal
Asheesh Kumar Singh
Navneet Kumar Singh
Download PDF Download RIS Download Bibtex

Abstract

The dynamics of economic development determines the need to develop technologies for waste recycling especially the acquisition of condensed fuels for the needs of the local diversification of energy sources. In a short time, Poland will probably lack its own produced electricity. To apply the process of diversification of energy sources, by developing methods of generating energy from waste, it becomes crucial to protect the environment. The use of cogeneration technology based on fuels derived from waste, in particular concentrated oil and gas fuels, is becoming more common and provides the basis for securing the energy supply in the preferred diversification process. Plastic waste processing in the controlled depolymerization process, which is the reverse of the polymerization process for hydrocarbon recovery – uses petroleum derivatives its production. At present, the greatest interest arises in the material recovery of plastics and rubber in the process of anaerobic thermal decomposition (thermolysis/pyrolysis), which is used on an industrial scale and consists in the degradation of polymer bonds into low molecular weight. The imperative of a modern economy is to obtain energy from fuels from waste treatment, including hazardous waste, preferably in the cogeneration process. The fuel obtained from waste may be used to obtain thermal or electric energy in order to diversify energy sources. The article presents innovative Polish technologies of obtaining fuel in processes of anaerobic thermal decomposition mainly of elastomeric and polymeric waste (including hazardous ones) for direct application in power generators of various power.

Go to article

Authors and Affiliations

Artur Gołowicz
Andrzej Wojciechowski
Download PDF Download RIS Download Bibtex

Abstract

The energy efficiency of photovoltaic modules is one of the most important aspects in energetic and economic aspects of the project related to system installations. The efficiency of modules and the electricity produced by photovoltaic conversion in solar modules is affected by many factors, both internal, related to the module structure itself and its technical and external factors related to the energy infrastructure, which includes: cabling, inverters, climate conditions prevailing at the micro-installation location and the orientation and angle of inclination of the solar modules. The installation of photovoltaic modules should be preceded by an energy efficiency analysis, which will help to indicate the optimal solution adapted to the given conditions. The article presents a comparative analysis of the amount of energy produced under real and simulated conditions. Analyzes were made on the basis of research carried out in the Wind and Solar Energy Laboratory located at the AGH University of Science and Technology, data from solar irradiation data-bases and computer software for estimating energy resources. The study examined the correlation of the solar irradiation on the modules and the amount of electricity generated in the photovoltaic module. The electricity produced by the module was compared under real conditions and simulated based on two sources of data. The comparison and analysis of the amount of energy of the module were also made, taking simulated different angles of the module’s inclination into account.

Go to article

Authors and Affiliations

Bartosz Soliński
Monika Stopa
Download PDF Download RIS Download Bibtex

Abstract

The future and development of energy is one of the most important problems in both domestic and global politics. Limiting the use of fossil fuels in the energy sector results from new legal conditions related to the protection of the natural environment. These changes require the development of a new energy strategy, taking the limits of greenhouse gas emissions in the European Union and the requirements of the Community energy policy into account. One of the documents affecting the structure of Poland’s energy mix is the Directive on renewable energy sources (2009/28/EC). Poland has committed to achieving the goal of a 15% share of energy from renewable sources (RES) in gross final energy consumption by 2020. Current changes in Polish RES support systems – in particular the transition from the system of green certificates to auctions for green energy – may threaten the achievement of the above-mentioned goal. The article analyzes whether Poland will meet renewable energy obligations by 2020 under the current conditions. In addition, the article presents current energy consumption in the world and in the country, legal conditions taken into account when creating the country’s energy mix and forecasts of renewable energy demand.

Go to article

Authors and Affiliations

Anna Manowska
Download PDF Download RIS Download Bibtex

Abstract

Scientists are focusing on the introduction of various types of renewable energy sources and the liberalization of energy markets in the regions of the country. The problems of preventing the achievement of goals and various strategies to achieve maximum energy conservation and overcoming the current economic and environmental crisis in Ukraine also remain unresolved. We can observe the experience of the leading countries in the electricity sector, which proves that reforming the electricity sector in Ukraine is inevitable. This, in turn, is a critical factor in stimulating economic and social growth and improving the competitiveness of the regions of Ukraine. Given the above, the necessity for the study of the level of efficiency (competitiveness) and the functioning of the regional energy markets of Ukraine is obvious.
This study shows that the efficiency of electricity in the western region is relatively low due to the lack of competition, the presence of an ineffective system of subsidizing the population with cheap resources, the non-transparency of trade operations, excessive regulation of state generation, the lack of a “balanced” system of market functioning, etc.
Go to article

Authors and Affiliations

Kostiantyn Pavlov
1
ORCID: ORCID
Olena Pavlova
1
ORCID: ORCID
Taras Kotsko
2
ORCID: ORCID
Oksana Novosad
1
ORCID: ORCID
Lubomyr Matiychuk
3
ORCID: ORCID
Antonina Tomashevska
4
ORCID: ORCID
Oleksandr Shabala
1
ORCID: ORCID
Nadia Pylypiv
5
ORCID: ORCID

  1. Lesya Ukrainka Volyn National University, Ukraine
  2. National Technical University of Ukraine “Igor Sikorsky Kyiv Politechnic Institute”, Ukraine
  3. Ternopil Ivan Puluj National Technical University, Ukraine
  4. Vasyl Stefanyk Precarpathian National University, Ukraine
  5. Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk Ukraine, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Portugal is a country on the Iberian Peninsula with a population of just over 10 million people. The country has no reserves of energy resources such as oil, natural gas, or coal and is therefore dependent on their imports. Nevertheless, it has no problems ensuring energy security. It imports oil from countries such as Brazil, Nigeria, Saudi Arabia and Angola, and gas from Algeria, Nigeria, the United States of America and Qatar. All imports of crude oil and most imports of petroleum products pass through the two main ports of Sines and Leixões, while gas is imported via the Sines LNG terminal and two cross-border gas pipelines at Campo Maior and Valença do Minho. Coal imports are no longer a problem following the closure of the last coal-fired power plant in 2021. As recently as 2019, fossil fuels accounted for as much as 76% of Portugal’s total primary energy supply, with oil accounting for 43%, but the majority of this demand was consumed by road transport (51%), followed by oil-based industries (16%) and household heating (5%). Now, however, the situation is changing. Hydropower and rapidly developing wind and solar energy account for a large share of electricity generation. By 2030, Portugal plans to commission between 600 and 900 MW of new solar capacity annually. Energy security in Portugal is the responsibility of the government and the relevant ministries. As in many other European countries, there is a clear drive towards decarbonization and measures are being taken to ensure that this process takes place as soon as possible, as is explicitly stated in Portuguese government documents. The analysis presented in this article shows that Portugal, despite lacking significant energy resources, can guarantee its energy security at a high level.
Go to article

Authors and Affiliations

Tadeusz Olkuski
1
ORCID: ORCID

  1. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The connection of renewable energy sources with significant nominal power (in the order of MW) to the medium-voltage distribution grid affects the operating conditions of that grid. Due to the increasing number of installed renewable energy sources and the limited transmission capacity of medium-voltage networks, the cooperation of these energy sources is becoming increasingly important. This article presents the results of a six-year study on a 2 MW wind power plant and a 1 MW photovoltaic power plant in the province of Warmia and Mazury, which are located a few kilometers away from each other. In this study, active energy, currents, voltages as well as active, reactive, and apparent power and higher harmonics of currents and voltages were measured. The obtained results show the parameters determining the power quality at different load levels. Long-term analysis of the operation of these power plants in terms of the generated electricity and active power transmitted to the power grid facilitated estimating the repeatability of active energy production and the active power generated in individual months of the year and times of day by a wind power plant and a photovoltaic power plant. It also allowed us to assess the options of cooperation between these energy sources. It is important, not only from a technical but also from an economic point of view, to determine the nominal power of individual power plants connected to the same connection point. Therefore, the cooperation of two such power plants with the same nominal power of 2 MW was analyzed and the economic losses caused by a reduction in electricity production resulting from connection capacity were estimated.
Go to article

Bibliography

  1.  C. Warren, “Feature — Wind, Sun, and Water,” EPRI Journal, no. 3, pp. 8–11, May/June 2016.
  2.  The Construction Law Act of 7 July 1994. Dz.U. 2019, item 1186.
  3.  The Energy Law Act of 10 April 1997. Dz.U. 1997, no. 54, item 348 as amended.
  4.  The Environmental Protection Law Act of 27 April 2001. Dz.U. 2001, no. 62, item 627.
  5.  The Act on Providing Information about the Environment and its Protection, Public Participation in the Environmental Protection and on Environmental Impact Assessment of 3 October 2008. Dz.U. 2008, no. 199, item 1227.
  6.  The Regulation of the Council of Ministers of 10 September 2019 on projects which may significantly affect the environment. Dz.U. 2019, item 1839.
  7.  The Act amending the Renewable Energy Sources Act and Some Other Acts of 7 June 2018, Dz.U. 2018, item 1276.
  8.  The Renewable Energy Sources Act of 20 February 2015. Dz.U. 2015, item 478 as amended.
  9.  H. Ritchie and M. Roser, “Renewable Energy.” [Online]. Available: https://ourworldindata.org/renewable-energy. [Accessed: 15 Nov. 2020].
  10.  G. Chicco, J. Schlabbach, and F. Spertino, “Characterisation and assessment of the harmonic emission of grid-connected photovoltaic systems,” in Proc. IEEE Russia Power Tech, 2005, pp.  1–7, doi: 10.1109/PTC.2005.4524744.
  11.  L. Liu, H. Li, Y. Xue, and W. Liu, “Reactive power compensation and optimization strategy for grid-interactive cascaded photovoltaic systems,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 188–202, 2015, doi: 10.1109/TPEL.2014.2333004.
  12.  S. Mishra and P.K. Ray, “Power quality improvement using photovoltaic fed DSTATCOM based on JAYA optimization,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1672–1680, 2016, doi: 10.1109/TSTE.2016.2570256.
  13.  A. Lange and M. Pasko, “Selected aspects of photovoltaic power station operation in the power system,” Przegląd Elektrotechniczny, vol. 96, no. 5, pp. 30–34, 2020, doi: 10.15199/48.2020.05.05.
  14.  H. Serghine, R. Merahi, R. Chenni, and D. Buła, “Combined operation of photovoltaic and active power filter system connected to nonlinear load,” Roum. Sci. Techn. Électrotechn. Énerg., vol. 64, no. 4, pp. 371–376, 2019, doi: https://www.researchgate.net/publication/342079034.
  15.  N. Mansouri, A. Lashab, D. Sera, J.M. Guerrero, and A. Cherif, “Large photovoltaic power plants integration: A review of challenges and solutions,” Energies, vol. 12, no. 19, pp. 3798, 2019, doi: 10.3390/en12193798.
  16.  J. Smith, S. Rönnberg, M. Bollen, J. Meyer, A.M. Blanco, K.-L. Koo, and D. Mushamalirwa, “Power quality aspects of solar power – results from CIGRE JWG C4/C6.29,” CIRED – Open Access Proceedings Journal, 2017, pp. 809–813, 2017, doi: 10.1049/oap-cired.2017.0351.
  17.  J. Meyer, A. M. Blanco, S. Rönnberg, M. Bollen, and J. Smith, “CIGRE C4/C6.29: survey of utilities experiences on power quality issues related to solar power,” CIRED – Open Access Proceedings Journal, 2017, pp. 539–543, doi: 10.1049/oap-cired.2017.0456.
  18.  Z. Chen and E. Spooner, “Grid power quality with variable speed wind turbines,” IEEE Trans. Energy Convers., vol. 16, no. 2, pp. 148–154, 2001, doi: 10.1109/60.921466.
  19.  A. Lange and M. Pasko, “Selected aspects of wind power plant operation in the power system,” in Proc. 12th Int. Conf. and Exhibition on Electrical Power Quality and Utilisation (EPQU), 2020, pp. 1–4, doi: 10.1109/EPQU50182.2020.9220302.
  20.  M. Mróz, K. Chmielowiec, and Z. Hanzelka, “Voltage fluctuations in networks with distributed power sources,” in Proc. 15th Int. Conf. on Harmonics and Quality of Power (ICHQP), 2012, pp.  920–925, doi: 10.1109/ICHQP.2012.6381206.
  21.  M. Farhoodnea, A. Mohamed, H. Shareef, and H. Zayandehroodi, “Power quality impact of renewable energy based generators and electric vehicles on distribution systems,” Procedia Technology, vol. 11, pp. 11–17, 2013, doi: 10.1016/j.protcy.2013.12.156.
  22.  N. Golovanov, G.C. Lazaroiu, M. Roscia, and D. Zaninelli, “Power quality assessment in small scale renewable energy sources supplying distribution systems,” Energies, vol. 6, no. 2, pp.  634–645, 2013, doi: 10.3390/en6020634.
  23.  A. Merzic, M. Music, and M. Redzic, “A complementary hybrid system for electricity generation based on solar and wind energy taking into account local consumption – Case study,” in Proc. 3rd Int. Conf. on Electric Power and Energy Conversion Systems, 2013, pp.  1–6, doi: 10.1109/EPECS.2013.6712993.
  24.  R.N.S.R. Mukhtaruddin, H.A. Rahman, and M.O.J. Hassan, “Economic analysis of grid-connected hybrid photovoltaic-wind system in Malaysia,” in Proc. Int. Conf. on Clean Electrical Power (ICCEP), 2013, pp. 577–583, doi: 10.1109/ICCEP.2013.6586912.
  25.  K. Benyahia, L. Boumediene, and A. Mezouar, “Efficiency and performance of mixed wind farm using photovoltaic solar farm as STATCOM,” in Proc. 3rd Int. Renewable and Sustainable Energy Conference (IRSEC), 2015, pp. 1–5, doi: 10.1109/IRSEC.2015.7455092.
  26.  Ö. Kiymaz and T. Yavuz, “Wind power electrical systems integration and technical and economic analysis of hybrid wind power plants,” in Proc. IEEE International Conference on Renewable Energy Research and Applications (ICRERA), 2016, pp. 158–163, doi: 10.1109/ ICRERA.2016.7884529.
  27.  C. Wang, S. Liu, Z. Bie, and J. Wang, “Renewable Energy Accommodation Capability Evaluation of Power System with Wind Power and Photovoltaic Integration,” IFAC-PapersOnLine, vol. 51, no. 28, pp.  55–60, 2018, doi: 10.1016/j.ifacol.2018.11.677.
  28.  M. Bollen, J. Meyer, H. Amaris, A.M. Blanco, A.G. de Castro, J. Desmet, M. Klatt, Ł. Kocewiak, S. Rönnberg, and K. Yang, “Future work on harmonics – some expert opinions Part I – wind and solar power,” Proc. of 16th International Conference on Harmonics and Quality of Power (ICHQP), 2014, pp. 904–908, doi: 10.1109/ICHQP.2014.6842870.
  29.  S.K. Rönnberg, K. Yang, M.H.J. Bollen, and A. Gil de Castro, “Waveform distortion – a comparison of photovoltaic and wind power,” Proc. of 16th International Conf. on Harmonics and Quality of Power (ICHQP), 2014, pp. 733–737, doi: 10.1109/ICHQP.2014.6842782.
  30.  O. Lennerhag, M. Bollen, S. Ackeby, and S. Rönnberg, “Very short variations in voltage (timescale less than 10 minutes) due to variations in wind and solar power,” Proc. of International Conference and Exhibition on Electricity Distribution, CIRED, 2015, pp. 1–5.
  31.  A. Zomers and R. Seethapathy, “The potential of hybrid systems for off-grid power supply,” ELECTRA, no. 289, Report WG C6.28, pp. 23–27, 2016.
  32.  D. Heide, L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, and S. Bofinger, “Seasonal optimal mix of wind and solar power in a future, highly renewable Europe,” Renew. Energy, vol.  35, no. 11, pp. 2483–2489, 2010, doi: 10.1016/j.renene.2010.03.012.
  33.  L. Hirth, “The optimal share of variable renewables: How the variability of wind and solar power affects their welfare-optimal deployment,” The Energy Journal, vol. 9, no. 1, pp.  149–184, 2015, doi: 10.2139/ssrn.2351754.
  34.  W. Ningbo, “The key technology of the control system of wind farm and photovoltaic power plant cluster,” in Proc. IEEE International Conference on Power System Technology, 2014, pp.  2833–2839, doi: 10.1109/POWERCON.2014.6993817.
  35.  S.S. Singh, E. Fernandez, and T.Ksh. Tompok Singh, “Reliable PV/Wind renewable energy mix for a remote area,” in Proc. Annual IEEE India Conference (INDICON), 2015, pp. 1–5, doi: 10.1109/INDICON.2015.7443419.
  36.  Y. Zhang, L. Wei, and J. Li, “Study on renewable energy integration influence and accommodation capability in regional power grid,” in Proc. 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2015, pp. 563–568, doi: 10.1109/DRPT.2015.7432292.
  37.  L.R.A. Gabriel Filho, O.J. Seraphim, F.L. Caneppele, C.P.C. Gabriel, and F.F. Putti, “Variable analysis in wind photovoltaic hybrid systems in rural energization,” IEEE Latin America Transactions, vol. 14, no. 12, pp. 4757–4761, 2016, doi: 10.1109/TLA.2016.7817007.
  38.  Y. Shuo, B. Hongkun, W. Jiangbo, Y. Meng, M. Renyuan, and Y. Jing, “Accommodated capacity for wind and solar power under the background of supply side reform: Model and empirical study,” in Proc. 2nd International Conference on Power and Renewable Energy (ICPRE), 2017, pp.  382–386, doi: 10.1109/ICPRE.2017.8390563.
  39.  D.B. Carvalho, E.C. Guardia, and J.W. Marangon Lima, “Technical-economic analysis of the insertion of PV power into a wind-solar hybrid system,” Solar Energy, vol. 191, pp.  530–539, 2019, doi: 10.1016/j.solener.2019.06.070.
  40.  A. Thomas and P. Racherla, “Constructing statutory energy goal compliant wind and solar PV infrastructure pathways,” Renewable Energy, vol. 161, pp. 1–19, 2020, doi: 10.1016/j.renene.2020.06.141.
  41.  Z. Hanzelka and A. Firlit. Elektrownie ze źródłami odnawialnymi. Zagadnienia wybrane. Kraków: AGH, 2015, pp. 459–484.
  42.  K. Mousa, H. AlZu’bi, and A. Diabat, “Design of a hybrid solar-wind power plant using optimization,” in Proc. 2nd International Conference on Engineering System Management and Applications (ICESMA), 2010, pp. 1–6.
  43.  J. Jurasz and J. Mikulik, “Economic and environmental analysis of a hybrid solar, wind and pumped storage hydroelectric energy source: a Polish perspective,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 6, pp. 859–869, 2017, doi: 10.1515/bpasts-2017-0093.
  44.  P. Marchel, J. Paska, K. Pawlak, and K. Zagrajek, “A practical approach to optimal strategies of electricity contracting from Hybrid Power Sources,” Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1543–1551, 2020, doi: 10.24425/bpasts.2020.135377.
  45.  R. Al Badwawi, M. Abusara, and T. Mallick, “A review of hybrid solar PV and wind energy system,” Smart Science, vol. 3, no.  3, pp. 127–138, 2015, doi: 10.1080/23080477.2015.11665647.
  46.  F.A. Khan, N. Pal, and S.H. Saeed, “Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies,” Renewable and Sustainable Energy Reviews, vol. 92, pp. 937–947, 2018, doi: 10.1016/j. rser.2018.04.107.
  47.  K. Sood and E. Muthusamy, “A comprehensive review on hybrid renewable energy systems,” Modern Physics Letters B, vol. 34, no.  27, pp. 2050290, 2020, doi: 10.1142/S0217984920502905.
  48.  Commission Regulation (EU) 2016/631 of 14 April 2016 establishing a network code on requirements for grid connection of generators.
  49.  International Electrotechnical Commission (IEC). Electromagnetic compatibility (EMC). Testing and measurement techniques – Power quality measurement methods (IEC 61000-4-30:2015). IEC: Geneva, Switzerland, 2015.
  50.  International Electrotechnical Commission (IEC). Electromagnetic compatibility (EMC). Power quality measurement in power supply systems – Part 2: Functional tests and uncertainty requirements (IEC 62586-2:2017). IEC: Geneva, Switzerland, 2017.
  51.  International Electrotechnical Commission (IEC). Electromagnetic compatibility (EMC). Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto (IEC 61000-4-7: 2002 + AMD1: 2008 CSV). IEC: Geneva, Switzerland, 2009.
  52.  D. Buła, D. Grabowski, A. Lange, M. Maciążek, and M. Pasko, “Long- and Short-Term Comparative Analysis of Renewable Energy Sources,” Energies, vol. 13, no. 14, pp. 3610, 2020, doi: 10.3390/en13143610.
  53.  International Electrotechnical Commission (IEC). Recommendations for small renewable energy and hybrid systems for rural electrification – Part 7‒1: Generators – Photovoltaic generators (IEC TS 62257-7-1:2010). IEC: Geneva, Switzerland, 2010.
  54.  International Electrotechnical Commission (IEC). Electromagnetic compatibility (EMC) – Part 3‒6: Limits – Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems (IEC TR 61000-3-6:2008). IEC: Geneva, Switzerland, 2008.
  55.  European Committee for Electrotechnical Standardization. Standard EN 50160:2010: Voltage Characteristics of Electricity Supplied by Public Distribution Systems; CENELEC: Brussels, Belgium, 2010.
  56.  International Electrotechnical Commission (IEC). Wind energy generation systems – Part 21‒1: Measurement and assessment of electrical characteristics – Wind turbines (IEC 61400-21-1:2019). IEC: Geneva, Switzerland, 2019.
Go to article

Authors and Affiliations

Andrzej Lange
1
ORCID: ORCID
Marian Pasko
2
Dariusz Grabowski
2
ORCID: ORCID

  1. Department of Electrical and Power Engineering, Electronics and Automation, University of Warmia and Mazury, ul. M. Oczapowskiego 11, 10-719 Olsztyn, Poland
  2. Department of Electrical Engineering and Computer Science, Silesian University of Technology, ul. Akademicka 10, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The condition of the Polish energy sector does not inspire any trust of its customers. Outdated machinery and the lack of investment in new technologies make it necessary to take action to ensure the stability and continuity of electricity supplies to the end-user. In Poland, the industrial power sector is based on the use of coal and despite the Government’s announcements to resign from this raw material, more and more power investments are being made to generate energy from coal (Ostrołęka power plant). The solution which compensates for the current state of the Polish power industry is the development of distributed generation. The article presents a description of dispersed sources, power market, its organization and problems arising from its implementation. Distributed energy sources in the form of micro installations, energy clusters and virtual power plants have been described and characterized as well. It also assesses the impact of power market introduction on the development of distributed energy sources. The impact of the power market on the development of distributed sources is very hard to predict and determine. The functioning and further development of the energy sector, including the capacity market, strongly depends on the laws, regulations, as well as the economic and political situation in Poland and Europe. The social factor will also play an important role as the introduction of the capacity market will burden the financial side of each energy consumer. On the basis of the data presented on particular sources and distributed systems, one can only make predictions related to the possible effects of introducing the capacity market for the development of distributed sources.

Go to article

Authors and Affiliations

Sławomir Sowa
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the optimal sizing of PV/Wind/Fuel Cell/Battery Hybrid Energy System for energizing a Small Scale Industrial Application or a village domestic load of 200 kW. HOMER software is used for simulation of the complete system. The solar radiation data and wind speed data used in this paper are for the place of Coimbatore, Tamil Nadu, India which is located 11.0183° N longitude and 76.9725° E latitude. The optimized sizes of components of Hybrid Power System (HPS) are found based on Levelised Cost of Energy (LCE) and total Net Present Cost (NPC). The results are presented and compared for five different combinations of HPS components. Suggestions are also presented to choose the low cost system which produces energy at low LCE.

Go to article

Authors and Affiliations

T. Bogaraj
J. Kanakaraj
K. Mohan Kumar
Download PDF Download RIS Download Bibtex

Abstract

The objective of the European Green Deal is to change Europe into the world’s first climate- -neutral continent by 2050. Therefore, European countries are developing technological solutions to increase the production of energy from renewable sources of energy. In order to universally implement energy production from renewable energy sources, it is necessary to solve the problem of energy storage. The authors discussed the issue of energy storage and renewable energy sources, reviewing applied thermal and mechanical energy storage solutions. They referred to the energy sector in Poland which is based mainly on mining activities. The method that was used in this paper is a review of thermal and mechanical energy storage solutions. In industrial practice, various solutions on energy storage are developed around the world. The authors reviewed those solutions and described the ones which currently function in practice. Hence, the authors presented the good practices of energy storage technology. Additionally, the authors conducted an analysis of statistical data on the energy sector in Poland. The authors presented data on prime energy production in Poland in 2004–2019. They described how the data has changed over time. Subsequently, they presented and interpreted data on renewable energy sources in Poland. They also showed the situation of Poland compared to other European countries in the context of the share of renewables in the final gross energy consumption.
Go to article

Bibliography

Abbas et al. 2020 – Abbas, Z., Chen, D., Li, Y., Yong, L. and Wang, R.Z. 2020. Experimental investigation of underground seasonal cold energy storage using borehole heat exchangers based on laboratory scale sandbox. Geothermics 87, 101837.
Agencja Rynku Energii SA 2020. Primary Energy Balance in 2004–2019 (Bilans Energii Pierwotnej w latach 2004–2019). Warszawa (in Polish).
Airly, 2020. Oddychaj Polsko. Raport o stanie powietrza. [Online] https://airly.org/pl/raport-jakosci-powietrza/ [Accessed: 2021-09-09].
Bartoszek et al. 2021 – Bartoszek, S., Stankiewicz, K., Kost, G., Ćwikła, G. and Dyczko, A. 2021. Research on Ultrasonic Transducers to Accurately Determine Distances in a Coal Mine Conditions. Energies 14(9), 2532.
Belu, R. 2019. Energy storage for electric grid and renewable energy application. In: Energy Storage, Grid Integration, Energy Economics, and the Environment. CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 29–33.
Cabała et al. 2020 – Cabała, J., Warchulski R., Rozmus, D., Środek, D. and Szełęg, E. 2020. Pb-rich slags, minerals, and pollution resulted from a medieval Ag-Pb smelting and mining operation in the Silesian-Cracovian region (southern Poland). Minerals 10, p. 28.
Cader et al. 2021a – Cader, J., Koneczna, R. and Olczak, P. 2021a. The Impact of Economic, Energy, and Environmental Factors on the Development of the Hydrogen Economy. Energies 14(16), p. 4811.
Cader et al. 2021b – Cader, J., Olczak, P. and Koneczna, R. 2021b. Regional dependencies of interest in the “My Electricity” photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24(2), pp. 97–116.
Ciapała et al. 2021 – Ciapała, B., Jurasz, J., Janowski, M. and Kępińska, B. 2021. Climate factors influencing effective use of geothermal resources in SE Poland: the Lublin trough. Geotherm. Energy 9, p. 3. CSO 2020. Energy from renewable sources in 2019. Warsaw.
Davies, R. 2020. Peak performance: could mountains create long-term energy storage? Power Technol. [Online] https://power.nridigital.com/future_power_technology_feb20/peak_performance_could_mountains_ create_long-term_energy_storage [Accessed: 2021-04-20].
Dychkovskyi et al. 2019 – Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K. and Cabana, E. 2019. Some aspects of modern vision for geoenergy usage. E3S Web Conf. 123, 01010.
Dyczko, A. and Malec, M. 2021. Innovative Concept of Production Support System for the {LW} Bogdanka Mine. {IOP} Conf. Ser. Mater. Sci. Eng. 1134, 12004.
Energy Instrat 2021. No Title. [Online] https://www.energy.instrat.pl [Accessed: 2021-03-23].
Euractive 2021. EU’s draft renewables law confirms 38–40% target for 2030. [Online] https://www.euractiv.com/section/energy/news/leak-eus-draft-renewables-law-confirms-38-40-target-for-2030/ [Accessed: 2021-05-18].
European Commission 2019. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels.
European Environmental Agency 2021. Share of energy consumption from renewable sources in Europe. EEA. [Online] https://www.eea.europa.eu/data-and-maps/indicators/renewable-gross-final-energyconsumption-5/assessment [Accessed: 2021-06-21].
Frankowski, J. 2020. Attention: Smog alert! Citizen engagement for clean air and its consequences for fuel poverty in Poland. Energy Build. 207, 109525.
Gawlik, L. ed. 2013. Coal for the Polish energy sector in the perspective of 2050 – scenario analyzes (Węgiel dla polskiej energetyki w perspektywie 2050 roku – analizy scenariuszowe). Katowice: Górnicza Izba Przemysłowo-Handlowa (in Polish).
Graboś, A. and Żymanowska-Kumon, S. 2014. Counteracting low emissions in dense residential areas (Przeciwdziałanie niskiej emisji na terenach zwartej zabudowy mieszkalnej) [ed.] R. Sadlok. Bochnia: HELIOS (in Polish).
Gravitricity 2020. Gravitricity. [Online] https://gravitricity.com/ [Accessed: 2021-07-27].
Holder, M. 2020. Gravitricity to pilot £1m gravity-based energy storage system in Edinburgh. Bus. Green. [Online] https://www.businessgreen.com/news/4015015/gravitricity-pilot-gbp-gravity-energy-storage-edinburgh [Accessed: 2021-07-22].
Hunt et al. 2020 – Hunt, J.D., Zakeri, B., Falchetta, G., Nascimento, A., Wada, Y. and Riahi, K. 2020. Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and longterm storage technologies. Energy 190, 116419.
Hussein et al. 2004 – Hussein, H.M.S., Ahmad, G.E. and El-Ghetany, H.H. 2004. Performance evaluation of photovoltaic modules at different tilt angles and orientations. Energy Convers. Manag. 45, pp. 2441–2452.
Kadar, P. 2014. Pros and Cons of the Renewable Energy Application. Acta Polytechnica Hungarica 11(4), pp. 211–224.
Kamiński, P. 2021a. A New Method of Regulation of Loads Acting on the Shaft Lining in Sections Located in the Salt Rock Mass. Energies 14(1), p. 0042.
Kamiński, P. 2021b. Development of New Mean of Individual Transport for Application in Underground Coal Mines. Energies 14(7), p. 2022.
Kamiński et al. 2021 – Kamiński, P., Dyczko, A. and Prostański, D. 2021. Virtual Simulations of a New Construction of the Artificial Shaft Bottom (Shaft Safety Platform) for Use in Mine Shafts. Energies 14(8), 2110.
Kaszyński et al. 2019 – Kaszyński, P., Komorowska, A. and Kamiński, J. 2019. Regional distribution of hard coal consumption in the power sector under selected forecasts of EUA prices. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 35(4), pp. 113–134.
Klojzy-Karczmarczyk, B. and Mazurek, J. 2009. Local government responsibilities in the process of reducing low emission (Zadania samorządów lokalnych w procesie likwidacji niskiej emisji). Polityka Energetyczna 12(2.2), pp. 277–284 (in Polish).
Komorowska et al. 2020 – Komorowska, A., Benalcazar, P., Kaszyński, P. and Kamiński, J. 2020. Economic consequences of a capacity market implementation: The case of Poland. Energy Policy 144, 111683.
Kopacz et al. 2020 – Kopacz, M., Kulpa, J., Galica, D. and Olczak, P. 2020. The influence of variability models for selected geological parameters on the resource base and economic efficiency measures – Example of coking coal deposit. Resour. Policy 68, 101711.
Koval et al. 2019 – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019. Environmentalconcept of energy security solutions of local communities based on energy logistics. [In:] 19th International Multidisciplinary Scientific GeoConference SGEM 2019, International Multidisciplinary Scientific GeoConference-SGEM. STEF92 Technology, 51 Alexander Malinov blvd, Sofia, 1712, Bulgaria, pp. 283–290.
Kryzia, D. and Pepłowska, M. 2019. The impact of measures aimed at reducing low-stack emission in Poland on the energy efficiency and household emission of pollutants. Polityka Energetyczna – Energy Policy Journal 22(2), pp. 121–132.
Kubiński, K. and Szabłowski, Ł. 2020. Dynamic model of solar heating plant with seasonal thermal energy storage. Renew. Energy 145, pp. 2025–2033.
Kwestarz, M. 2016. Thermal energy storage – types of energy storage (Magazynowanie ciepła – rodzaje magazynów). Czysta Energ. 12, pp. 29–35 (in Polish).
Mangold, D. and Deschaintre, L. 2016. Seasonal thermal energy storage. Report on state of the art and necessary further R+D. [Online] http://task45.iea-shc.org/data/sites/1/publications/IEA_SHC_Task45_ B_Report.pdf {accessed: 2021.09.09].
Matuszewska et al. 2017 – Matuszewska, D., Kuta, M. and Górski, J. 2017. Cogeneration – Development and prospect in Polish energy sector. E3S Web Conf. 14, p. 01021.
Matuszewska et al. 2020 – Matuszewska, D., Kuta, M. and Olczak, P. 2020. Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions. Energies 13(13), p. 3404.
Matuszewska, D. and Olczak, P. 2020. Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC). Energies 13(6), p. 1499.
Mikhno et al. 2021 – Mikhno, I., Koval, V., Shvets, G., Garmatiuk, O. and Tamosiuniene, R. 2021. Green Economy in Sustainable Development and Improvement of Resource Efficiency. Cent. Eur. Bus. Rev. 10, pp. 99–113.
Mirowski et al. 2020 – Mirowski, T., Jach-Nocoń, M., Jelonek, I. and Nocoń, A. 2020. The new meaning of solid fuels from lignocellulosic biomass used in low-emission automatic pellet boilers. Polityka Energetyczna – Energy Policy Journal 23(1), pp. 75–86.
Mokrzycki, E. and Gawlik, L. 2013. Strategy for the security of energy resources in Poland-renewable energy sources. [In:] Environmental Engineering IV.
Olczak, P. and Komorowska, A. 2021. An adjustable mounting rack or an additional PV panel? Cost and environmental analysis of a photovoltaic installation on a household: A case study in Poland. Sustain. Energy Technol. Assessments 47, 101496.
Olczak et al. 2020 – Olczak, P., Matuszewska, D. and Kryzia, D. 2020. ”Mój Prąd” as an example of the photovoltaic one off grant program in Poland. Polityka Energetyczna – Energy Policy Journal 23(2), pp. 123–138.
Olczak et al. 2021a – Olczak, P., Jaśko, P., Kryzia, D., Matuszewska, D., Fyk, M.I. and Dyczko, A. 2021a. Analyses of duck curve phenomena potential in polish PV prosumer households’ installations. Energy Reports 7, pp. 4609–4622.
Olczak et al. 2021b – Olczak, P., Kryzia, D., Matuszewska, D. and Kuta, M. 2021b. “My Electricity” Program Effectiveness Supporting the Development of PV Installation in Poland. Energies 14(1), p. 0231.
Olczak et al. 2021c – Olczak, P., Olek, M., Matuszewska, D., Dyczko, A. and Mania, T. 2021c. Monofacial and Bifacial Micro PV Installation as Element of Energy Transition – The Case of Poland. Energies 14(2), p. 0499.
Orzeł, B. 2020. Non-financial Value Creation Due to Non-financial Data Reporting Quality. Zesz. Nauk. Organ. i Zarządzanie 148, pp. 605–617.
Palka, D. and Stecuła, K. 2019. Concept of technology assessment in coal mining. IOP Conf. Ser. Earth Environ. Sci. 261, 012038.
Państwowy Instytut Geologiczny 2020. Balance of mineral deposits resources in Poland (Bilans zasobów złóż kopalin w Polsce). Warszawa: Państwowy Instytut Geologiczny (in Polish).
Paszkowski, W. and Loska, A. 2017. The use of data mining methods for the psychoacoustic assessment of noise in urban environment. Int. Multidiscip. Sci. GeoConference SGEM 17, pp. 1059–1066.
Pedchenko et al. 2018 – Pedchenko, M., Pedchenko, L., Nesterenko, T. and Dyczko, A. 2018. Technological Solutions for the Realization of NGH-Technology for Gas Transportation and Storage in Gas Hydrate Form. Solid State Phenom. 277, pp. 123–136.
Possemiers, M. 2014. Aquifer Thermal Energy Storage under different hydrochemical and hydrogeological conditions. [Online] https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1930575&context= L&vid=Lirias&search_scope=Lirias&tab=default_tab〈=en_US&fromSitemap=1 [Accessed: 2021-09-09].
Rafał, K. and Grabowski, P. 2021. Energy storage (Magazynowanie energii). Academia – Mag. Pol. Akad. Nauk, DOI: 10.24425/academiaPAN.2021.136844 34–40 (in Polish).
REHAU 2011. Underground Thermal Energy Storage. Improving efficiency through seasonal heat storage. Canada.
Schmidt et al. 2018 – Schmidt, T., Pauschinger, T., Sørensen, P.A., Snijders, A., Djebbar, R., Boulter, R. and Thornton, J. 2018. Design Aspects for Large-scale Pit and Aquifer Thermal Energy Storage for District Heating and Cooling. Energy Procedia 149, pp. 585–594.
Soliński, J. 2004. Energy sector – world and Poland. Development 1971–2000, prospects to 2030. Statistics Poland 2019. Energia ze źródeł odnawialnych w 2018 roku. Informacje sygnalne. Statistics Poland 2020a. Energy 2020. Warszawa.
Statistics Poland 2020b. Energia ze źródeł odnawialnych w 2019 roku. Informacje sygnalne.
Stecuła, K. 2018. Decision-making Dilemmas in Mining Enterprise and Environmental Issues, i. e. Green Thinking in Mining. 18th Int. Multidiscip. Sci. Geoconference SGEM 2018, pp. 357–364.
Stecuła, K. and Brodny, J. 2017a. Perspectives on renewable energy development as alternative to conventional energy in Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 717–724.
Stecuła, K. and Brodny, J. 2017b. Generating knowledge about the downtime of the machines in the example of mining enterprise. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 359–366.
Stecuła, K. and Brodny, J. 2018a. Role and meaning of coal mining in Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. pp. 801–808.
Stecuła, K. and Brodny, J. 2018b. Decision-making possibilities in the field of excavated material quality shaping in terms of environmental protection, I. E. how to be greener in mining. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 243–250. Stecuła, K. and Tutak, M. 2018. Causes and effects of low-stack emission in selected regions of Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, pp. 357–364.
Steinmann et al. 2019 – Steinmann, W.-D., Bauer, D., Jockenhöfer, H. and Johnson, M. 2019. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy 183, pp. 185–190.
Woźniak, J. and Pactwa, K. 2018. Responsible Mining – The Impact of the Mining Industry in Poland on the Quality of Atmospheric Air. Sustainability 10, p. 1184.
Wróbel et al. 2019 – Wróbel, J., Sołtysik, M. and Rogus, R. 2019. Selected elements of the Neighborly Exchange of Energy – Profitability evaluation of the functional model. Polityka Energetyczna – Energy Policy Journal 22(4), pp. 53–64.
Wyrwicki, G. 2004. Thermogravimetric analysis – unappreciated method for determination of rock type and quality (Analiza termograwimetryczna – niedoceniana metoda określania rodzaju i jakości kopaliny). Górnictwo Odkryw. 46, pp.120–125 (in Polish).
Żelazna et al. 2020 – Żelazna, A., Gołębiowska, J., Zdyb, A. and Pawłowski, A. 2020. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 13(15), p. 3978.
Go to article

Authors and Affiliations

Artur Dyczko
1
ORCID: ORCID
Paweł Kamiński
2
Kinga Stceuła
3
Dariusz Prostański
4
Michał Kopacz
1
ORCID: ORCID
Daniel Kowol
4
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Faculty of Mining and Geoengineering, AGH University of Science and Technology, Kraków, Poland
  3. Przedsiębiorstwo Budowy Szybów SA, Tarnowskie Góry, Poland
  4. KOMAG Institute of Mining Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Every developing country is beginning to rely on “green” energy in connection with environmental problems, including the global warming of our planet. It is expected that in the future, the production of electricity using the conversion of sunlight would take the dominant place in the energy infrastructure around the world. However, photovoltaic converters mainly generate intermittent energy due to natural factors (weather conditions) or the time of day in a given area. Therefore, the purpose of this study is to consider options for eliminating the interrupted nature of the operation of a solar installation through innovative additional applications. To achieve this goal, issues of the prospect of using energy storage devices and the choice of the most efficient and reliable of them are considered, as are the environmental friendliness of accumulators/batteries and the economic benefits of their use. The results of the analyses provide an understanding of the factors of using existing technologies with regard to their technical and economic aspects for use in solar energy. It was determined that the most common and predominant types of energy storage are lithium-ion and pumped storage plants. Such accumulation systems guarantee high efficiency and reliability in the operation of solar installation systems, depending on the scale of the solar station. Storage devices that are beginning to gain interest in research are also considered – storage devices made of ceramics of various kinds and thermochemical and liquid-air technologies. This study contributes to the development of an energy-storage system for renewable energy sources in the field of technical and economic optimization.
Go to article

Authors and Affiliations

Anzhela A. Barsegyan
1
ORCID: ORCID
Irina R. Baghdasaryan
1
ORCID: ORCID

  1. Department of Civil Engineering, Architecture, Energetics and Water Systems, Shushi University of Technology, Stepanakert, Armenia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the scope of the international curriculum developed under the MOOC4ALL project financed by the Erasmus Plus Strategic Partnerships Program for the MOOC platform https://platform.mooc4all.eu/. The project partners were research units and non-profit organizations from Germany, Poland, Romania and Hungary. Developed under the project, the curricula covers topics in the “green area” such as renewable energy sources, waste management and sustainable development. Research conducted in the consortium countries has demonstrated the need to create online courses in these subject areas to respond to market demand and achieve the goals of the 2030 Agenda for Sustainable Development. Green education is essential for safeguarding a sustainable world, maintaining it and preserving it for future generations. Currently, in times of climate crisis, increasing public awareness through non-formal education is of key importance. In the field of education, MOOCs have attracted a lot of attention as tools for open distance learning in the last decade. They make it possible to use the potential of new technologies in the didactic process and enable a reduction in the differences between developing and developed countries thanks to new interactive digital learning channels, which transpired to be particularly important during the Covid- 19 pandemic. The online courses developed as part of the project are available to participants free of charge in five languages – English, German, Polish, Romanian and Hungarian.
Go to article

Authors and Affiliations

Aleksandra Kasztelewicz
1
ORCID: ORCID
Barbara Tomaszewska
1
ORCID: ORCID
Susanne Rahner
2
Ilona Winter
2
Volker Voss
2

  1. Department of Renewable Energy and Environmental Research, Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
  2. UBB e.V., Germany
Download PDF Download RIS Download Bibtex

Abstract

The agrarian process includes many industrial phenomena and events. The goal of economics as a science is to precisely detect and describe the relationships between various market mechanisms. These phenomena can be presented as the desire “to describe reality in terms of systems, their components and relationships, both between components of the system and between different systems” (Jankowski 1997). The energy sector is a special field among many areas of the national economy, and the products of this sector have a major impact on the branches of the economy and the mechanisms of action occurring in them. The publication is devoted to the construction of a mathematical model used to support the energy policy of local government units. The aim of the study is to build a mathematical model of energy production, taking the development potential of renewable energy into account, as well as to propose the desired direction of energy policy development in the analyzed periods to the regional authorities and to offer a model for creating an energy policy in other local government units: poviats, communes. Until now, few authors have comprehensively dealt with this issue. To date, no detailed research has been published on issues related to renewable energy development and the use of mathematical methods in the construction of the energy production model in local government units. The undertaken research is a contribution to the development of knowledge about alternative energy sources in the energy margin.

Go to article

Authors and Affiliations

Marcin Rabe
Download PDF Download RIS Download Bibtex

Abstract

The strategic goals of EU energy development have been clarified, based on efforts to increase and comply with environmental protection requirements, reducing energy consumption in the manufacturing and service sector, reduce dependence on energy imports, and increase the involvement of renewable resources in energy. The structure of the unified energy system of Ukraine was monitored. The volumes of electricity released by various power-generating enterprises in Ukraine, as well as the existing capacity of main and inter-state electric power grids for transmission of electricity, were analyzed. The volume of electricity exports and imports of the unified energy system of Ukraine and its possibilities to increase exports to the EU countries have been diagnosed. It has been proven that due to the change in the operating model of the electricity market the liberalization of the electricity market of Ukraine promotes the attraction of investment resources aimed at branching the possibilities of importing electricity generated in Ukraine into the ENTSO-E system. The structural tendencies of changes in generated electricity in final consumption at the expense of renewable energy sources of the European countries and Ukraine were studied. Options for increasing the efficiency of renewable energy sources are proposed The use of renewable energy sources on the basis of leveling out certain disadvantages is proposed. The directions improve the management of electricity enterprises in the conditions of the European integration choice of Ukraine including towards attracting investment resources through the use of public-private partnerships to improve the efficiency of the energy system of Ukraine are substantiated.

Go to article

Authors and Affiliations

Rostislav Tulchinskiy
Mykola Butko
Svitlana Tulchynska
Veronika Khudolei
Download PDF Download RIS Download Bibtex

Abstract

The following paper presents the process of decarbonization of the energy sector in Greece and points out to different methods the Greek authorities are adopting in order to reduce the emission of greenhouse gases generated by electricity production. Greece is a country which is modernizing its energy sector gradually, yet dynamically. One of the prime aims is to reduce the level of energy produced in coal-fired power plants by focusing on the renewable energy and the gas sector. In 2010 still more than half of the electrical energy was generated by lignite-fired power plants. Almost ten years later the ratio has dropped to only slightly more than 30%. A significant reduction in coal consumption was possible thanks to investments in renewable energy sources, especially in the wind and solar energy sectors. Both sectors have seen a large increase in production, making renewable energy sources already accounting for over 20% of Greek electricity production. Capital-intensive investments were also made in the country’s gas supply through the expansion of gas-fired power plants and gas transmission networks. As a result, natural gas remains the main source of energy for Greece next to coal. Unfortunately, a big challenge in terms of decarbonization is the need for increased imports of electricity from abroad, due to the insufficient capacity of the Greek energy sector. Therefore, the main purpose of this paper is to define a Greek model of decarbonization and to point out to its benefits and dangers. Greek strategy might serve as an example of how to successfully solve the energy issues in the countries with similar energy profile.
Go to article

Authors and Affiliations

Wiktor Hebda
1
ORCID: ORCID

  1. Faculty of International and Political Studies, Jagiellonian University in Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The large variability and unpredictability of energy production from photovoltaic power microinstallations results from the dependence on the current weather conditions. These conditions depend on a number of factors and are variable over the time. Despite this specificity, photovoltaic micro-installations are becoming more and more popular in the world and in Poland. This is mainly due to the fact that the generation of energy from renewable sources has numerous advantages, the energy is free, renewable in time and ecological, and its production on its own gives partial independence from energy supplies from the power grid. In addition, the observed significant prices decrease of solar modules has further accelerated the development of the use of this energy source. Concern for this method of energy production among households has increased significantly in Poland after introducing the prosumer in the legal framework and the use of administrative and financial support. The implemented prosumer mechanisms allowed, for example, the net balancing of the energy consumed and produced by the micro-installation through storage in the power grid. The article describes the problem of balancing sources using solar energy, based on micro-installation used in the household (the so-called prosumer installation). The conducted analyses compared the load profile of a typical household and the energy generation profile from a photovoltaic installation, determining the real balancing formation level of such a system.

Go to article

Authors and Affiliations

Bartosz Soliński
Download PDF Download RIS Download Bibtex

Abstract

The Polish energy sector is, to a large extent, based on fossil fuels used in conventional energy, which is not entirely consistent with the current energy policy of the European Union. Therefore, it is necessary to increase the use of renewable energy sources that guarantee the preservation of the value of the natural environment in rural areas. It should be emphasized that in addition to the economic effect, the environmental effect is very important, understood as the impact of renewable energy on the natural environment and the quality of life of rural residents. The intensive development of RES raises a lot of controversy among politicians, as well as among rural residents, who are also associated with the myths regarding renewable energy as harmful to the natural environment.

Rural development should be connected with the socio-economic situation, and even more so with the socio-cultural situation of its inhabitants, because it assumes that the development of rural areas in Poland is associated not only with agriculture, but also with historical and natural values and their durability.

The aim of this work is to determine the attitudes of the inhabitants of rural areas of the Podkarpackie Province on the impact of renewable energy sources on the natural environment. The work assumes that the durability of rural areas is largely connected with the ability to preserve their natural values, as well as ensuring a satisfactory quality of life for residents. The basic source of data was surveys carried out in 2017 among 282 inhabitants of the Podkarpackie Province .

Go to article

Authors and Affiliations

Marian Woźniak
Bartosz Saj
Download PDF Download RIS Download Bibtex

Abstract

The implementation of micro scale combined heat and power systems is one of the ways to improve the energy security of consumers. In fact, there are many available large and medium scale cogeneration units, which operate according to the Rankine Cycle. Due to European Union demands in the field of using renewable energy sources and increasing energy efficiency result in the importance of additionally developing systems dedicated for use in residential buildings, farms, schools and other facilities. This paper shows the concept of introducing thermoelectric generators into typical wood stoves: steel plate wood stoves and accumulative wood stoves. Electricity generated in thermoelectric generators (there were studies on both three market available units and a prototypical unit developed by the authors) may be firstly consumed by the system (to power controller, actuators, fans, pumps, etc.). Additional power (if available) may be stored in batteries and then used to power home appliances (light, small electronics and others). It should be noted that commercially available thermoelectric generators are not matched for domestic heating devices – the main problems are connected with an insufficient heat flux transmitted from the stove to the hot side of the generator (caused e.g. by the non -homogeneous temperature distribution of the surface and bad contact between the stove and the generator) and inefficient cooling. To ensure the high efficiency of micro cogeneration systems, developing a dedicated construction both of the generator and the heat source is necessary.

Go to article

Authors and Affiliations

Krzysztof Sornek
Mariusz Filipowicz

This page uses 'cookies'. Learn more