Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the design process and the results of a novel fall detector designed and constructed at the Faculty of Electronics, Military University of Technology. High sensitivity and low false alarm rates were achieved by using four independent sensors of varying physical quantities and sophisticated methods of signal processing and data mining. The manuscript discusses the study background, hardware development, alternative algorithms used for the sensor data processing and fusion for identification of the most efficient solution and the final results from testing the Android application on smartphone. The test was performed in four 6-h sessions (two sessions with female participants at the age of 28 years, one session with male participants aged 28 years and one involving a man at the age of 49 years) and showed correct detection of all 40 simulated falls with only three false alarms. Our results confirmed the sensitivity of the proposed algorithm to be 100% with a nominal false alarm rate (one false alarm per 8 h).
Go to article

Authors and Affiliations

BartÅ‚omiej Wójtowicz
Andrzej Dobrowolski
Kazimierz Tomczykiewicz
Download PDF Download RIS Download Bibtex

Abstract

Falls are one of the leading causes of disability and premature death among the elderly. Technical solutions designed to automatically detect a fall event may mitigate fall-related health consequences by immediate medical assistance. This paper presents a wearable device called TTXFD based on MPU6050 which can collect triaxial acceleration signals. We have also designed a two-step fall detection algorithm that fuses threshold-based method (TBM) and machine learning (ML). The TTXFD exploits the TBM stage with low computational complexity to pick out and transmit suspected fall data (triaxial acceleration data). The ML stage of the two-step algorithm is implemented on a server which encodes the data into an image and exploits a fall detection algorithm based on convolutional neural network to identify a fall on the basis of the image. The experimental results show that the proposed algorithm achieves high sensitivity (97.83%), specificity (96.64%) and accuracy (97.02%) on the open dataset. In conclusion, this paper proposes a reliable solution for fall detection, which combines the advantages of threshold-based method and machine learning technology to reduce power consumption and improve classification ability.
Go to article

Authors and Affiliations

Tao Xu
1
Haifeng Se
1
Jiahui Liu
1

  1. Shenyang Aerospace University, School of Automation, Shenbei New District, Shenyang, China

This page uses 'cookies'. Learn more