Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Modern infrared cameras are constructed with two main types of infrared detectors: photon detectors and thermal detectors. Because of economic reasons, vast numbers of modern thermal cameras are constructed with the use of infrared microbolometric detectors which belong to the group of thermal detectors. Thermal detectors detect incident infrared radiation by measuring changes of temperature on the surface of a special micro-bridge structure. Thermal detectors, like microbolometric detectors on one hand should be sensitive to changing temperature to accurately measure incoming infrared radiation from the observed scene, on the other hand there are many other phenomena that change the temperature of the detector and influence the overall response of the detector. In order to construct an accurate infrared camera, there is a need to evaluate these phenomena and quantify their influence. In the article the phenomenon of self heating due to the operation of the readout circuit is analyzed on an UL 03 19 1 detector. The theoretical analysis is compared with the results of conducted measurements. Measurements with a type SC7900VL thermographic camera were performed to measure the thermodynamic behavior of the UL 03 19 1 detector array.

Go to article

Authors and Affiliations

Grzegorz Bieszczad
Mariusz Kastek
Download PDF Download RIS Download Bibtex

Abstract

Non−uniformity noise, it was, it is, and it will probably be one of the most non−desired attached companion of the infrared focal plane array (IRFPA) data. We present a higher order filter where the key advantage is based in its capacity to estimates the detection parameters and thus to compensate it for fixed pattern noise, as an enhancement of Constant Statistics (CS) theory. This paper shows a technique to improve the convergence in accelerated way for CS (AACS: Acceleration Algorithm for Constant Statistics). The effectiveness of this method is demonstrated by using simulated infrared video sequences and several real infrared video sequences obtained using two infrared cameras

Go to article

Authors and Affiliations

A.G. Jara-Chavez
F.O. Torres-Vicencio
Download PDF Download RIS Download Bibtex

Abstract

Ga-free InAs/InAsSb type-II superlattice structures grown on GaSb substrates have demonstrated high performance for mid-wave infrared applications. However, realisation of long wavelength infrared photodetectors based on this material system still presents challenges, especially in terms of reduced quantum efficiency. This reduction is due, in part, to the increased type-II superlattice period required to attain longer wavelengths, as thicker periods decrease the wave-function overlap for the spatially separated quantum wells. One way to improve long wavelength infrared performance is to modify the type-II superlattice designs with a shorter superlattice period for a given wavelength, thereby increasing the wave-function overlap and the resulting optical absorption. Long wavelength infrared epitaxial structures with reduced periods have been realised by shifting the lattice constant of the type-II superlattice from GaSb to AlSb. Alternatively, epitaxial growth on substrates with orientations different than the traditional (100) surface presents another way for superlattice period reduction. In this work, the authors evaluate the performance of long wavelength infrared type-II superlattice detectors grown by molecular beam epitaxy using two different approaches to reduce the superlattice period: first, a metamorphic buffer to target the AlSb lattice parameter, and second, structures lattices matched to GaSb using substrates with different orientations. The use of the metamorphic buffer enabled a ~30% reduction in the superlattice period compared to reference baseline structures, maintaining a high quantum efficiency, but with the elevated dark current related to defects generated in the metamorphic buffer. Red-shift in a cut-off wavelength obtained from growths on high-index substrates offers a potential path to improve the infrared photodetector characteristics. Focal plane arrays were fabricated on (100), (311)A- and (211)B-oriented structures to compare the performance of each approach.
Go to article

Authors and Affiliations

Dmitri Lubyshev
1
Joel M. Fastenau
1
Michael Kattner
1
Philip Frey
1
Scott A. Nelson
1
Ryan Flick
1
Ying Wu
1
Amy W. K. Liu
1
Dennis E. Szymanski
1
Becky Martinez
2
Mark J. Furlong
2
Richard Dennis
3
Jason Bundas
3
Mani Sundaram
3

  1. IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
  2. IQE, Pascal Close, St. Mellons, Cardiff, CF3 0LW, UK
  3. QmagiQ, LCC, 22 Cotton Rd., Unit H, Suite 180, Nashua, NH 03063, USA
Download PDF Download RIS Download Bibtex

Abstract

The hyperspectral thermal imaging instrument for technology demonstration funded by NASA’s Earth Science Technology Office under the In-Space Validation of Earth Science Technologies program requires focal plane array with reasonably good performance at a low cost. The instrument is designed to fit in a 6U CubeSat platform for a low-Earth orbit. It will collect data on hydrological parameters and Earth surface temperature for agricultural remote sensing. The long wavelength infrared type-II strain layer superlattices barrier infrared detector focal plane array is chosen for this mission. With the driving requirement dictated by the power consumption of the cryocooler and signal-noise-ratio, cut-off wavelengths and dark current are utilized to model instrument operating temperature. Many focal plane arrays are fabricated and characterised, and the best performing focal plane array that fulfils the requirements is selected. The spectral band, dark current and 8–9.4 m pass band quantum efficiency of the candidate focal plane array are: 8–10.7 m, 2.1∙10−5 A/cm2, and 47%, respectively. The corresponding noise equivalent difference temperature and operability are 30 mK and 99.7%, respectively. Anti-reflective coating is deposited on the focal plane array surface to enhance the quantum efficiency and to reduce the interference pattern due to an absorption layer parallel surfaces cladding material.
Go to article

Authors and Affiliations

Sir B. Rafol
1
Sarath D. Gunapala
1
David Z. Ting 
1
Alexander Soibel
1
Arezou Khoshakhlagh
1
Sam A. Keo
1
Brian J. Pepper 
1
Cory J. Hill
1
Yuki Maruyama
1
Anita M. Fisher 
1
Ashok Sood
2
John Zeller 
2
Robert Wright
3
Paul Lucey
3
Miguel Nunes
3
Luke Flynn
3
Sachidananda Babu
4
Parminder Ghuman
4

  1. Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
  2. Magnolia Optical Technologies, Inc, Albany New York 12203, USA
  3. Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
  4. NASA Earth Science Technology Office Greenbelt, Maryland, USA
Download PDF Download RIS Download Bibtex

Abstract

In the last decade, infrared imaging detectors trend has gone for smaller pixels and larger formats. Most of the time, this scaling is carried out at a given total sensitive area for a single focal plane array. As an example, QVGA 30 µm pitch and VGA 15 µm pitch exhibit exactly the same sensitive area. SXGA 10 µm pitch tends to be very similar, as well. This increase in format is beneficial to image resolution. However, this scaling to even smaller pixels raises questions because the pixel size becomes similar to the IR wavelength, but also to the typical transport dimensions in the absorbing material. Hence, maintaining resolution for such small pixel pitches requires a good control of the modulation transfer function and quantum efficiency of the array, while reducing the pixel size. This might not be obtained just by scaling the pixel dimensions. As an example, bulk planar structures suffer from excessive lateral diffusion length inducing pixel-to-pixel cross talk and thus degrading the modulation transfer function. Transport anisotropy in some type II superlattice structures might also be an issue for the diffusion modulation transfer function. On the other side, mesa structures might minimize cross talk by physically separating pixels, but also tend to degrade the quantum efficiency due to a non-negligible pixel fill factor shrinking down the pixel size. This paper discusses those issues, taking into account different material systems and structures, in the perspective of the expected future pixel pitch infrared focal plane arrays.
Go to article

Authors and Affiliations

Olivier Gravrand 
1
Nicolas Baier 
1
Alexandre Ferron 
1
Florent Rochette  
1
Clément Lobre 
1
Jocelyn Bertoz 
2
Laurent Rubaldo
2

  1. CEA-LETI, 17 des Martyrs St., 38054 Grenoble, France
  2. Lynred, BP 21, 38113 Veurey-Voroize, France
Download PDF Download RIS Download Bibtex

Abstract

Infrared detector technologies engineered from III-V semiconductors such as strained-layer superlattice, quantum well infrared photodetectors, and quantum dot infrared photodetectors provide additional flexibility to engineer bandgap or spectral response cut-offs compared to the historical high-performance detector technology of mercury/cadmium/telluride. The choice of detector cut-off depends upon the sensing application for which the system engineer is attempting to maximize performance within an expected ensemble of operational scenarios that define objects or targets to be detected against specific environmental backgrounds and atmospheric conditions. Sensor performance is typically characterised via one or more metrics that can be modelled or measured experimentally. In this paper, the authors will explore the impact of detector cut-off wavelength with respect to different performance metrics such as noise equivalent temperature difference and expected target detection or identification ranges using analytical models developed for several representative sensing applications encompassing a variety of terrestrial atmospheric conditions in the mid-wave and long-wave infrared wavelength bands. The authors will also report on their review of recently published literature concerning the relationships between cut-off wavelength and the other detector performance characteristics such as quantum efficiency or dark current for a variety of detector technologies.
Go to article

Authors and Affiliations

Jonathan Ch. James
1
ORCID: ORCID
Terence L. Haran
1
Sarah E. Lane
1

  1. Electro-Optical Systems Laboratory, Georgia Tech Research Institute, 925 Dalney St. NW, Atlanta, GA 30332, USA
Download PDF Download RIS Download Bibtex

Abstract

Infrared thermal imaging, using cooled and uncooled detectors, is continuously gaining attention because of its wide military and civilian applications. Futuristic requirements of high temperature operation, multispectral imaging, lower cost, higher resolution (using pixels) etc. are driving continuous developments in the field. Although there are good reviews in the literature by Rogalski [1–4], Martyniuk et al. [5] and Rogalski et al. [6] on various types of infrared detectors and technologies, this paper focuses on some of the important recent trends and diverse applications in this field and discusses some important fundamentals of these detectors.

Go to article

Authors and Affiliations

R.K. Bhan
V. Dhar

This page uses 'cookies'. Learn more