Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 235
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Laplace Transform is often used in solving the free vibration problems of structural beams. In existing research, there are two types of simplified models of continuous beam placement. The first is to regard the continuous beam as a single-span beam, the middle bearing of which is replaced by the bearing reaction force; the second is to divide the continuous beam into several simply supported beams, with the bending moment of the continuous beam at the middle bearing considered as the external force. Research shows that the second simplified model is incorrect, and the frequency equation derived from the first simplified model contains multiple expressions which might not be equivalent to each other. This paper specifies the application method of Laplace Transform in solving the free vibration problems of continuous beams, having great significance in the proper use of the transform method.

Go to article

Authors and Affiliations

H.B. Wen
T. Zeng
G.Z. Hu
Download PDF Download RIS Download Bibtex

Abstract

In this paper, two new sinusoidal signal frequency estimators calculated on the basis of four equally spaced signal samples are presented. These estimators are called four-point estimators. Simulation and experimental research consisting in signal frequency estimation using the invented estimators have been carried out. Simulation has also been performed for frequency tracking. The simulation research was carried out applying the MathCAD computer program that determined samples of a sinusoidal signal disturbed by Gaussian noise. In the experimental research, sinusoidal signal samples were obtained by means of a National Instruments PCI-6024E data acquisition card and an Agilent 33220A function generator. On the basis of the collected samples, the values of four-point estimators invented by the authors and, for comparison, the values of three- and four-point estimators proposed by Vizireanu were determined. Next, estimation errors of the signal frequency were determined. It has been shown that the invented estimators can estimate a signal frequency with greater accuracy.
Go to article

Authors and Affiliations

Sergiusz Sienkowski
Mariusz Krajewski
Download PDF Download RIS Download Bibtex

Abstract

In a television, obtaining a good acoustic response is a challenging issue because of slim mechanical structures. The area dedicated for speaker’s placement is limited and inadequate space inside the cabinet of a TV prevents possible solutions to increase the sound performance. In addition, frame of the TV’s is getting narrower as the customers searching for the highest screen to body ratio. These designing aspects restrain optimal speaker positioning to achieve good sound performance. In this paper, an analysis related to speaker’s placement and mounting angle is proposed. A rotation setup compatible with a TV was prepared to measure different facing position of the speaker. This paper proposes the analysis of speaker’s rotation and facing direction in a flat panel television and its effects on sound pressure level together with deviation of the acoustic response. Measurement results are analyzed with an audio analyzer together with a statistics tool to achieve precise results.
Go to article

Authors and Affiliations

Ibrahim Demirel
1

  1. Arçelik AS., Electronics HW Design, Turkey
Download PDF Download RIS Download Bibtex

Abstract

A new method of optical frequency beat counting based on fast Fourier transform (FFT) analysis is described. Signals with a worse signal-to-noise ratio can be counted correctly comparing to the conventional counting method of detecting each period separately. The systematic error of FFT counting below 10 Hz is demonstrated and can be decreased. Additionally the modulation width of a frequency-stabilized laser with high frequency modulation index can be simultaneously measured during a carrier frequency measurement against an optical frequency synthesizer or other laser.

Go to article

Authors and Affiliations

Petr Křen
Download PDF Download RIS Download Bibtex

Abstract

When a frequency domain sensor is under the effect of an input stimulus, there is a frequency shift at its output. One of the most important advantages of such sensors is their converting a physical input parameter into time variations. In consequence, changes of an input stimulus can be quantified very precisely, provided that a proper frequency counter/meter is used. Unfortunately, it is well known in the time-frequency metrology that if a higher accuracy in measurements is needed, a longer time for measuring is required. The principle of rational approximations is a method to measure a signal frequency. One of its main properties is that the time required for measuring decreases when the order of an unknown frequency increases. In particular, this work shows a new measurement technique, which is devoted to measuring the frequency shifts that occur in frequency domain sensors. The presented research result is a modification of the principle of rational approximations. In this work a mathematical analysis is presented, and the theory of this new measurement method is analysed in detail. As a result, a new formalism for frequency measurement is proposed, which improves resolution and reduces the measurement time.

Go to article

Authors and Affiliations

Fabian N. Murrieta-Rico
Vitalii Petranovskii
Oleg Y. Sergiyenko
Daniel Hernandez-Balbuena
Lars Lindner
Download PDF Download RIS Download Bibtex

Abstract

Complaints and awareness about environmental low-frequency (LF) noise and infrasound (IS) have increased in recent years, but knowledge about perceptual mechanisms is limited. To evaluate the use of the brain’s frequency-following response (FFR) as an objective correlate of individual sensitivity to IS and LF, we recorded the FFR to monaurally presented IS (11 Hz) and LF (38 Hz) tones over a 30-phon range for 11 subjects. It was found that 11-Hz FFRs were often significant already at ~0 phon, steeply grew to 20 phon, and saturated above. In contrast, the 38-Hz FFR growth was relatively shallow and continued to 60 phon. Furthermore, at the same loudness level (30 phon), the 11-Hz FFR strength was significantly larger (4.5 dB) than for 38 Hz, possibly reflecting a higher phase synchronization across the auditory pathway. Overall, unexpected inter-individual variability as well as qualitative differences between the measured FFR growth functions and typical loudness growth make interpretation of the FFR as objective correlate of IS and LF sensitivity difficult.

Go to article

Authors and Affiliations

Carlos Jurado
Torsten Marquardt
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of numerical calculations and experimental data on the directional pattern of two 38-element parametric arrays composed of ultrasound sources. Two types of antenna arrays are considered, namely with parallel and coaxial connections of ultrasonic transducers (elements). The results of selecting and functional testing of unit elements are described in this paper. It is found that in the coaxial element connection of the antenna array, the level of side lobes is higher than that in the parallel element connection.

Go to article

Authors and Affiliations

Denis S. Rakov
Aleksandr S. Rakov
Andrey N. Kudryavtsev
Nikolay P. Krasnenko
Yury A. Chursin
Maksim A. Murin
Download PDF Download RIS Download Bibtex

Abstract

Single Frequency Networks (SFN) of transmitters are currently used in television and digital broadcasting to effectively cover large areas using minimal spectral resources and using transmitters with much lower power than if the same area were covered using one transmitter. It is therefore a very ecological solution. In this way, much better reception conditions are obtained in large city areas, as the signal reaches the receiving antenna from different directions, reducing the risk of shading. However, in this type of network one should take into account the loss of signal caused by signal interference. Using the appropriate propagation model, it is possible, with appropriate assumptions, to check how the operation of the third transmitter affects the distribution and size of the deepest fades in relation to the network in which there are two transmitters.

Go to article

Authors and Affiliations

Ryszard J. Z Ziielinski
Download PDF Download RIS Download Bibtex

Abstract

Effective and safe labour requires good cooperation of all the physiological systems. A proper synchronization of uterine and abdominal muscles is necessary for labour progression. Therefore, a new method for simultaneous monitoring of uterine activities and parturient’s pushing efforts is presented. A high sampled, rectified electrohysterographic signal is divided into a low, uterine passband (0.1-3.00Hz) and a high, muscular (40-100Hz) one. The time-dependent mean frequencies arse estimated for each passband separately. At the moments of uterine contraction the time-dependent LOW mean frequency was locally increased. During parturient’s pushing effort the HIGH mean frequency was increased in the manner typical for the skeletal muscles. It seems that the proposed method would be less sensitive to a measuring noise than the previously published RMS based estimators. Moreover, the proposed method enables to monitor fatigue of a uterus or abdominal muscles during the prolonged 2nd stage of a labour. It can be helpful to make a decision of Caesarean section.
Go to article

Authors and Affiliations

Dariusz S. Radomski
1

  1. Department of Nuclear and Medical Electronics, Warsaw University of Technology, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Thermoacoustic refrigerator uses acoustic power to transport heat from a low-temperature source to a high-temperature source. The increasing interest in thermoacoustic technology is caused due to its simplicity, reliability as well as application of environmentally friendly working fluids. A typical thermoacoustic refrigerator consists of a resonator, a stack of parallel plates, two heat exchangers and a source of acoustic wave. The article presents the influence of the stack position in the resonance tube and the acoustic frequency on the performance of thermoacoustic refrigerator with a standing wave driven by a loudspeaker, which is measured in terms of the temperature difference between the stack edges. The results from experiments, conducted for the stack with the plate spacing 0.3 mm and the length 50 mm, acoustic frequencies varying between 100 and 400 Hz and air as a working fluid are consistent with the theory presented in this paper. The experiments confirmed that the temperature difference for the stack with determined plate spacing depends on the acoustic frequency and the stack position. The maximum values were achieved for resonance frequencies and the stack position between the pressure and velocity node.

Go to article

Authors and Affiliations

Artur Rusowicz
Jakub Kajurek
Andrzej Grzebielec
Download PDF Download RIS Download Bibtex

Abstract

Simultaneous propagation of vibrations and noise has an important role in the task of minimizing vibroacoustic hazards on the station of operator of the construction machinery. In many cases vibrations transferred by the construction are processed to noise in different points of the machine. As a result, they may increase the level of noise at the workplace. The paper presents the proposition of a simple estimation of noise and vibration propagation paths of the machine. On the basis of the analysis of hydraulic excavator an effectiveness of a proposed procedure was shown. This procedure helps to minimize the transfer of vibrations of power unit in selected frequency ranges which led to the change of overall noise level in operator’s cab about 5 dB.
Go to article

Authors and Affiliations

Zbigniew Dąbrowski
Jacek Dziurdź
Download PDF Download RIS Download Bibtex

Abstract

In parallel to the ultrasonic noise assessment procedures and research activity in the field there have appeared several papers in the domain of so called high-frequency audiometry which covers the range of frequencies 8-20 kHz. They are important for recognizing the harmfulness and hazard of the audible high frequency sound components in the same range as the one of the low frequency ultrasonic noise. On the other hand there exists a certain inconsequent situation in the general approach to the problem of ultrasonic noise hazard assessment in work places environment which concerns the convention to include the frequency range of 10-20 kHz to the domain of ultrasonics. The range consists of one third octave bands of central frequencies: 10, 12.5, 16, 20 kHz and conventionally is called low frequency ultrasonic noise though at least the components of the two lowest bands are naturally audible by a majority of population (mainly young people).The paper presents a discussion related to some achievements of the two domains and some conclusions which could be useful for a more consequent description of the subject and could be taken into account in the future regulations for the ultrasonic noise assessment in work places environment.
Go to article

Authors and Affiliations

Antoni Śliwiński
Download PDF Download RIS Download Bibtex

Abstract

Noise measurements have been carried out at eleven different sites located in three prominent cities of the Tarai region of India to evaluate the effectiveness of vegetation belts in reducing traffic noise along the roadsides. Attenuation per doubling of distance has been computed for each site and excess attenuation at different 1/3 octave frequencies has been estimated. The average excess attenuation is found to be approximately 15 dB over the low frequencies (200 Hz to 500 Hz) and between 15 dB to 20 dB over the high frequencies (8 kHz to 12.5 kHz). Over the critical middle frequencies (1-4 kHz), the average excess attenuation (between 10-15 dB) though not as high, is still significant, with a number of sites showing an excess attenuation of 15 dB or more at 1 kHz. The results indicate that sufficiently dense vegetation belts along the roadsides may prove as effective noise barriers and significant attenuation may be achieved over the critical middle frequencies (1-4 kHz).
Go to article

Authors and Affiliations

Vikrant Tyagi
Krishan Kumar
V.K. Jain
Download PDF Download RIS Download Bibtex

Abstract

The main aim of this paper is to present recent knowledge about the assessment and evaluation of low frequency noise and infrasound close to the threshold of hearing and the potential effects on human health. Low frequency noise generated by air flowing over a moving car with the open window is chosen as a source of noise. The noise within the interior of the car and its effects on a driver’s comfort at different velocities is analyzed. An open window at high velocity behaves as a source of specifically strong tonal low frequency noise which is annoying. The interior noise of a passenger car was measured under different conditions; while driving on normal highway and roadways. First, an octave-band analysis was used to assess the noise level and its impact on the driver’s comfort. Second, a Fast Fourier Transform (FFT) analysis was used for the detection of tonal low frequency noise. Finally, the paper suggests possibilities for scientifically assessing and evaluating low frequency noise but not only for the presented source of the sound.
Go to article

Authors and Affiliations

Stanislav Žiaran
Download PDF Download RIS Download Bibtex

Abstract

When two pure tones of slightly different frequency are presented separately to each ear, the listener perceives a third single tone with amplitude variations at a frequency that equals the difference between the two tones; this perceptual illusion is known as the binaural auditory beat (BB). There are anecdotal reports that suggest that the binaural beat can entrain EEG activity and may affect the arousal levels, although few studies have been published. There is a need for double-blind, well-designed studies in order to establish a solid foundation for these sounds, as most of the documented benefits come from self-reported cases that could be affected by placebo effect. As BBs are a cheap technology (it even exists a free open source programmable binaural- beat generator on the Internet named Gnaural), any achievement in this area could be of public interest. The aim in our research was to explore the potential of BBs in a particular field: tasks that require focus and concentration. In order to detect changes in the brain waves that could relate to any particular improvement, EEG recordings of a small sample of individuals were also obtained. In this study we compare the effect of different binaural stimulation in 7 EEG frequency ranges. 78 participants were exposed to 20-min binaural beat stimulation. The effects were obtained both quali- tative with cognitive test and quantitative with EEG analysis. Results suggest no significant statistical improvement in 20-min stimulation.
Go to article

Authors and Affiliations

Adela Crespo
Manuel Recuero
Gerardo Galvez
Adrián Begoña
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a self-excited induction generator model with saturation effect for power generating mode in a remote site. The model is led through the space vector mathematical formalism and allows one to analyze the steady and dynamic states. It is developed for a squirrel cage induction machine. This model provides magnetizing inductance variation able to influence the build-up and the stabilization of voltage generation when the load changes. The final result is a realistic approach model which takes into con- sideration the dependency of the magnetizing inductance versus magnetizing current. This novel model is validated through experimental measurements to demonstrate its validity and practicability.

Go to article

Authors and Affiliations

Ezzeddine Touti
Habib Kraim
Remus Pusca
Raphael Romary
Download PDF Download RIS Download Bibtex

Abstract

Microwave frequency detectors enable immediate determination of an unknown microwave signal frequency. Measurement is possible if the output characteristic of a frequency detector is unequivocal in a selected band of operation. The paper presents a method for obtaining unequivocal output characteristics for a given band of frequency detector operation.

Go to article

Authors and Affiliations

Czesław Rećko
Bronisław Stec
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a discrete wavelet transform (DWT) based approach is proposed for power system frequency estimation. Unlike the existing frequency estimators mainly used for power system monitoring and control, the proposed approach is developed for fundamental frequency estimation in the field of energy metering of nonlinear loads. The characteristics of a nonlinear load is that the power signal is heavily distorted, composed of harmonics, inter-harmonics and corrupted by noise. The main idea is to predetermine a series of frequency points, and the mean value of two frequency points nearest to the power system frequency is accepted as the approximate solution. Firstly the input signal is modulated with a series of modulating signals, whose frequencies are those frequency points. Then the modulated signals are decomposed into individual frequency bands using DWT, and differences between the maximum and minimum wavelet coefficients in the lowest frequency band are calculated. Similarities among power system frequency and those frequency points are judged by the differences. Simulation results have proven high immunity to noise, harmonic and inter-harmonic interferences. The proposed method is applicable for real-time power system frequency estimation for electric energy measurement of nonlinear loads.

Go to article

Authors and Affiliations

Zhang Peng
Hong-Bin Li
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the basic set-up of single-frequency microchip laser - so called Lyot filter configuration. Description of its operation and practical realization is given. Some results obtained for Nd:YAG/KTP microchip laser are presented. The evidences of single-frequency operation and its limits are emphasized. Described construction constitutes the base for building the frequency stabilization of green 532 nm microchip laser.

Go to article

Authors and Affiliations

A.J. Antończak
J.Z. Sotor
K.M. Abramski
Download PDF Download RIS Download Bibtex

Abstract

Centrifugal pumps are used for different applications that include pressure boosting, wastewater, water supply, heating and cooling distribution and other industrial processes. This paper presents theoretical and experimental investigations of mechanical vibrations of a centrifugal pump. The flow in this pump, which induces pressure pulsations and mechanical vibrations, have been monitored. Vibration measurements and data collection (overall vibrations levels and frequency spectrum) were extracted from the system. In addition, one of the methods used to study vibration amplitudes for this pump is forced response analysis. To study and analyze the pump system, the finite element analysis software (ANSYS) was applied. Depending on the analysis performed and investigations outcomes, the system natural frequency coincides with the vane-pass frequency (VPF) hazardously. To attenuate the system’s vibration, a vibration control element was used. The vibration levels were reduced by a factor of 2 for a tuned element as obtained from a forced harmonic response analysis of the pump system with absorber. It is shown that the inserted element allows the centrifugal pump to work in a safe operating range without any interference with its operation.

Go to article

Bibliography

[1] T. Wnek. Pressure pulsations generated by centrifugal pumps. Technical Report TI-1, Warren Pumps Inc., Warren, Massachusetts, 1987.
[2] M.N. Kumar. Vibration analysis of vane pass frequency vibrations in single stage single volute between bearing type pumps. International Journal of Mechanical Engineering, special issue, 85–87, May 2017.
[3] S. Rao. Mechanical Vibrations. Prentice Hall, New Jersey, 2011.
[4] A. Albraik, F. Althobiani, F. Gu, and A. Ball. Diagnosis of centrifugal pump faults using vibration methods. Journal of Physics: Conference Series, 364:012139, 2012. doi: 10.1088/1742-6596/364/1/012139.
[5] C. Ning and X. Zhang. Study on vibration and noise for the hydraulic system of hydraulic hoist. In Proceedings of the 1st International Conference on Mechanical Engineering and Material Science (MEMS 2012), pages 126–128, London, 4-6 July 2012. doi: 10.2991/mems.2012.95.
[6] D.Y. Li, R.Z. Gong, H.J. Wang, X.Z. Wei, Z.S. Liu, and D.Q. Qin. Analysis of rotor-stator interaction in turbine mode of a pump-turbine model. Journal of Applied Fluid Mechanics, 9(5):2559–2568, 2016. doi: 10.18869/acadpub.jafm.68.236.25086.
[7] J. Decaix, A. Müller, F. Avellan, and C. Münch. Rans computations of a cavitating vortex rope at full load. 6th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Ljubljana, Slovenia, 9-11 Sept. 2015.
[8] J. Yin, D. Wang, D.K. Walters, and X. Wei. Investigation of the unstable flow phenomenon in a pump turbine. Science China. Physics, Mechanics and Astronomy, 57(6):1119–1127, 2014. doi: 10.1007/s11433-013-5211-5.
[9] D. Li, H. Wang, G. Xiang, R. Gong, X. Wei, and Z. Liu. Unsteady simulation and analysis for hump characteristics of a pump turbine model. Renewable Energy, 77:32–42, 2015. doi: 10.1016/j.renene.2014.12.004.
[10] L. Wang, J. Yin, L. Jiao, D. Wu, and D. Qin. Numerical investigation in the “S” characteristics of a reduced pump turbine model. Science China. Technological Sciences, 54(5):1259–1266, 2011. doi: 10.1007/s11431-011-4295-2.
[11] J. Yin, D. Wang, L. Wang, Y. Wu, and X. Wei. Effects of water compressibility on the pressure fluctuation prediction in pump turbine. IOP Conference Series: Earth and Environmental Science, 15(6): 062030, 2012.
[12] D. Li, R. Gong, H.Wang, G. Xiang, X.Wei, and Z. Liu. Dynamic analysis on pressure fluctuation in vaneless region of a pump turbine. Science China. Technological Sciences, 58(5):813–824, 2015. doi: 10.1007/s11431-014-5761-4.
[13] Y. Zhou, P. Zhao. Vibration fault diagnosis method of centrifugal pump based on EMD complexity feature and least square support vector machine. Energy Procedia, 17:939–945, 2012. doi: 10.1016/j.egypro.2012.02.191.
[14] S. Farokhzad. Vibration based fault detection of centrifugal pump by fast Fourier transform and adaptive neuro-fuzzy inference system. J ournal of Mechanical Engineering and Technology, 1(3):82–87, 2013.
[15] V. Muralidharan andV. Sugumaran. Feature extraction usingwavelets and classification through decision tree algorithm for fault diagnosis of mono-block centrifugal pump. Measurement, 46(1):353–359, 2013. doi: 10.1016/j.measurement.2012.07.007.
[16] L. Beranek. Noise and Vibration Control. McGraw-Hill Book Company, New York, 1971.
[17] Y.P. Singh, J.H. Ball, K.E. Rouch, and P.N. Sheth. A finite elements approach for analysis and design of pumps. Finite Elements in Analysis and Design, 6(1):45–58, 1989. doi: 10.1016/0168-874X(89)90034-6.
Go to article

Authors and Affiliations

Nidal H. Abu-Hamdeh
1

  1. King Abdulaziz University, Jeddah, Saudi Arabia.
Download PDF Download RIS Download Bibtex

Abstract

A nanoscale beam model containing defect under the piezoelectricity considering the surface effects and flexoelectricity is established on the framework of Euler-Bernoulli theory. The governing equations of motion and related boundary conditions are derived by using Hamilton’s principle. The imperfect nanobeam is modeled by dividing the beam into two separate parts that are connected by a rotational and a longitude spring at the defect location. Analytical results on the free vibration response of the imperfect piezoelectric nanobeam exhibit that the flexoelectricity and the surface effects are sensitive to the boundary conditions, defect position, and geometry of the nanobeam. Numerical results are provided to predict the mechanical behavior of a weakened piezoelectric nanobeam considering the flexoelectric and surface effects. It is also revealed that the voltage, defect severity, and piezoelectric material have a critical role on the resonance frequency. The work is envisaged to underline the influence of surface effects and flexoelectricity on the free vibration of a cracked piezoelectric nanobeam for diverse boundary conditions. It should be mentioned, despite our R. Sourkiprevious works, an important class of piezoelectric materials used nowadays and called piezoelectric ceramics is considered in the current study.

Go to article

Bibliography

[1] S.M. Tanner, J.M. Gray, C.T. Rogers, K.A. Bertnees, and N.A. Sanford. High-Q GaN nanowire resonators and oscillators. Applied Physics Letters, 91(20):203117, 2007. 10.1063/1.2815747.
[2] W.S. Su,Y.F. Chen, C.L. Hsiao, and L.W. Tu. Generation of electricity in GaN nanorods induced by piezoelectric effect. Applied Physics Letters, 90(6):063110, 2007. 10.1063/1.2472539.
[3] B. Kumar and S.-W. Kim. Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy, 1(3):342–355, 2012. 10.1016/j.nanoen.2012.02.001.
[4] Z.L. Wang and J. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771):242–246, 2006. 10.1126/science.1124005.
[5] X.Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z.L.Wang. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6(12):2768–2772, 2006. 10.1021/nl061802g.
[6] S.C. Lao, Q. Kuang, Z.L.Wang, M.C. Park, and Y. Deng. Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Applied Physics Letters, 90(26): 262107, 2007. 10.1063/1.2748097.
[7] A. Chaipanich. Effect of PZT particle size on dielectric and piezoelectric properties of PZT–cement composites. Current Applied Physics, 7(5):574–577, 2007. 10.1016/j.cap.2006.11.036.
[8] H. Farokhi, A.K. Misra, and M.P. Païdoussis. A new electrostatic load model for initially curved carbon nanotube resonators: pull-in characteristics and nonlinear resonant behaviour. Nonlinear Dynamics, 88(2):1187–1211, 2017. 10.1007/s11071-016-3304-1.
[9] Z. Zhang, Z.Yan, and L. Jiang. Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. Journal of Applied Physics, 116(1): 014307, 2014. 10.1063/1.4886315.
[10] X. Liang, S. Hu, and S. Shen. Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Materials and Structures, 23(3):035020, 2014. 10.1088/0964-1726/23/3/035020.
[11] Z. Yan. Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates. Smart Materials and Structures, 25(3): 035017, 2016. 10.1088/0964-1726/25/3/035017.
[12] T.D. Nguyen, S. Mao, Y. Yeh , P.K. Purohit, and M.C. McAlpine. Nanoscale flexoelectricity. Advanced Materials, 25(7):946–974, 2013. 10.1002/adma.201203852.
[13] L. Qi, S. Zhou, and A. Li. Size-dependent bending of an electro-elastic bilayer nanobeam due to flexoelectricity and strain gradient elastic effect. Composite Structures, 135:167–175, 2016. 10.1016/j.compstruct.2015.09.020.
[14] R. Zhang, X. Liang, and S. Shen. A Timoshenko dielectric beam model with flexoelectric effect. Meccanica, 51(5):1181–1188, 2016. 10.1007/s11012-015-0290-1.
[15] Z. Yan and L.Y. Jiang. Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. Journal of Applied Physics. 113(19):194102, 2013. 10.1063/1.4804949.
[16] Z. Zhang. Size-dependent Electroelastic Properties of Piezoelectric Nanoplates. Master Thesis, The University of Western Ontario, Canada, 2014.
[17] X. Liang, S.Hu, and S. Shen. Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Materials and Structures, 24(10):105012, 2015. 10.1088/0964-1726/24/10/105012.
[18] Y. Tadi Beni. Size-dependent analysis of piezoelectric nanobeams including electromechanical coupling. Mechanics Research Communications, 75: 67–80, 2016. 10.1016/j.mechrescom.2016.05.011.
[19] R. Sourki and S.A.H. Hoseini. Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory. Applied Physics A, 122(4):413, 2016. 10.1007/s00339-016-9961-6.
[20] R. Sourki and S.A. Hosseini. Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam. The European Physical Journal Plus, 132(4):184, 2017. 10.1140/epjp/i2017-11458-0.
[21] S.J. Behrouz, O. Rahmani, and S.A. Hosseini. On nonlinear forced vibration of nano cantileverbased biosensor via couple stress theory. Mechanical Systems and Signal Processing, 128: 19–36, 2019. 10.1016/j.ymssp.2019.03.020.
[22] B.A. Hamidi, S.A.H. Hosseini, R. Hassannejad, and F. Khosravi. An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories. Journal of Thermal Stresses, 2019. 10.1080/01495739.2019.1666694.
[23] S.A Hosseini and O. Rahmani. Modeling the size effect on the mechanical behavior of functionally graded curved micro/nanobeam. Thermal Science and Engineering, 1(2):1–20, 2018. 10.24294/tse.v1i2.400.
[24] O. Rahmani, M. Shokrnia, H. Golmohammadi, and S.A.H. Hosseini. Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory. The European Physical Journal Plus, 133(2):42, 2018. 10.1140/epjp/i2018-11868-4.
[25] M. Ghadiri, S. Hosseini, M. Karami, and M. Namvar. In-plane and out of plane free vibration of U-shaped AFM probes based on the nonlocal elasticity. Journal of Solid Mechanics, 10(2):285–299, 2018.
[26] S. Hosseini and O. Rahmani. Bending and vibration analysis of curved FG nanobeams via nonlocal Timoshenko model. Smart Construction Research, 2(2):1–17, 2018.
[27] M. Namvar, E. Rezaei, S.A. Hosseini, and M. Ghadiri. Experimental and analytical investigations of vibrational behavior of U-shaped atomic force microscope probe considering thermal loading and the modified couple stress theory. The European Physical Journal Plus, 132(6): 247, 2017. 10.1140/epjp/i2017-11518-5.
[28] V. Refaeinejad, O. Rahmani, and S.A.H. Hosseini. Evaluation of nonlocal higher order shear deformation models for the vibrational analysis of functionally graded nanostructures. Mechanics of Advanced Materials and Structures, 24(13):1116–1123, 2017. 10.1080/15376494.2016.1227496.
[29] M. Zarepour, S.A.H. Hosseini, and A.H. Akbarzadeh. Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen’s differential model. Applied Mathematical Modelling, 69:563–582, 2019. 10.1016/j.apm.2019.01.001.
[30] C. Zhang, J. Zhu, W. Chen, and Ch. Zhang. Two-dimensional theory of piezoelectric shells considering surface effect. European Journal of Mechanics – A/Solids, 43:109–117, 2014. 10.1016/j.euromechsol.2013.09.007.
[31] Z. Zhang and L. Jiang. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. Journal of Applied Physics, 116(13):134308, 2014. 10.1063/1.4897367.
[32] Z. Yan and L. Jiang. Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. Journal of Physics D: Applied Physics, 45(25):255401, 2012. 10.1088/0022-3727/45/25/255401.
[33] G.Y. Huang and S.W. Yu. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Physica Status Solidi b, 243(4):R22-R24, 2006. 10.1002/pssb.200541521.
[34] Y.S. Li and E. Pan. Bending of a sinusoidal piezoelectric nanoplate with surface effect. Composite Structures, 136:45–55, 2016. 10.1016/j.compstruct.2015.09.047.
[35] M.S. Chiu. and T. Chen. Effects of high-order surface stress on static bending behavior of nanowires. Physica E: Low-dimensional Systems and Nanostructures, 44(3):714–718, 2011. 10.1016/j.physe.2011.11.016.
[36] A.H. Hosseini, O. Rahmani, M. Nikmehr, I.F. Golpayegani. Axial vibration of cracked nanorods embedded in elastic foundation based on a nonlocal elasticity model. Sensor Letters, 14(10):1019–1025, 2016. 10.1166/sl.2016.3575.
[37] O. Rahmani, S.A.H. Hosseini, M.H.N. Moghaddam, and I.F. Golpayegani. Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: An analytical study. International Journal of Applied Mechanics, 07(03):1550036, 2015. 10.1142/S1758825115500362.
[38] J. Xiao, Y. Xu, and F. Zhang. A rigorous solution for the piezoelectric materials containing elliptic cavity or crack with surface effect. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 96(5):633–641, 2016. 10.1002/zamm.201400232.
[39] K.F. Wang, and B.L. Wang. Nonlinear fracture mechanics analysis of nano-scale piezoelectric double cantilever beam specimens with surface effect. European Journal of Mechanics – A/Solids, 56:12–18, 2016. 10.1016/j.euromechsol.2015.10.002.
[40] H.S. Nan and B.L. Wang. Effect of crack face residual surface stress on nanoscale fracture of piezoelectric materials. Engineering Fracture Mechanics, 110:68–80, 2013. 10.1016/j.engfracmech.2013.08.002.
[41] S. Shen and S. Hu. A theory of flexoelectricity with surface effect for elastic dielectrics. Journal of the Mechanics and Physics of Solids, 58(5):665–677, 2010. 10.1016/j.jmps.2010.03.001.
[42] M. E. Gurtin and A.I. Murdoch. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4):291–323, 1975. 10.1007/BF00261375.
[43] J. Zhang, C. Wang, and S. Adhikari. Surface effect on the buckling of piezoelectric nanofilms. Journal of Physics D: Applied Physics, 45(28):285301, 2012. 10.1088/0022-3727/45/28/285301.
[44] A. Abdollahi, C. Peco, D. Millán, M. Arroyo, and I. Arias. Computational evaluation of the flexoelectric effect in dielectric solids. Journal of Applied Physics, 116(9):093502, 2014. 10.1063/1.4893974.
[45] Z. Zhang and L. Jiang. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. Journal of Applied Physics, 116(13):134308, 2014. 10.1063/1.4897367.
[46] T. Chen, M.S. Chiu, and C.N. Weng. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 100(7):074308, 2006. 10.1063/1.2356094.
[47] Z. Yan and L. Jiang. Influence of surface effects and flexoelectricity on vibration of piezoelectric nanobeams. 13th International Conference on Fracture, Beijing, China, 16–21 June, 2013.
[48] X. Liang, S. Hu, and S. Shen. A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory and its applications. Composite Structures, 111:317–323, 2014. 10.1016/j.compstruct.2014.01.019.
[49] Z. Yan and L.Y. Jiang. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 22(24):245703, 2011. 10.1088/0957-4484/22/24/245703.
[50] J. Loya, J. López-Puente, R. Zaera, and J. Fernández-Sáez. Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. Journal of Applied Physics, 10(4):044309, 2009. 10.1063/1.3068370.
[51] M. Akbarzadeh Khorshidi and M. Shariati. Investigation of flexibility constants for a multispring model: a solution for buckling of cracked micro/nanobeams. Journal of Theoretical and Applied Mechanics, 57(1):49–58, 2019.
[52] L.L. Zhang, J.X. Liu, X.Q. Fang, and G.Q. Nie. Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. European Journal of Mechanics – A/Solids, 46:22–29, 2014. 10.1016/j.euromechsol.2014.01.005.
[53] Y.M. Yue, K.Y. Xu, and T. Chen. A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Composite Structures, 136:278–286, 2016. 10.1016/j.compstruct.2015.09.046.
[54] J.A. Loya, J. Aranda-Ruiz, and J. Fernández-Sáez. Torsion of cracked nanorods using a nonlocal elasticity model. Journal of Physics D: Applied Physics, 47(11):115304, 2014. 10.1088/0022-3727/47/11/115304.
Go to article

Authors and Affiliations

Marzie Bastanfar
1
Seyyed Amirhosein Hosseini
2
Reza Sourki
3
Farshad Khosravi
4

  1. Department of Mechanical Engineering, University of Zanjan, Zanjan, Iran.
  2. Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University,Buein Zahra, Qazvin, Iran.
  3. School of Engineering, The University of British Columbia, Kelowna, Canada.
  4. Department of Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran.
Download PDF Download RIS Download Bibtex

Abstract

Cavitation has been widely used in wastewater degradation, material synthesis and biomedical field under dual-frequency acoustic excitation. The applications of cavitation are closely related to the power (i.e. the rate of internal energy accumulation) during bubble collapse. The Keller–Miksis equation considering liquid viscosity, surface tension and liquid compressibility is used to describe the radial motion of the bubble. The model is built in predicting the power during bubble collapse under dual-frequency acoustic excitation. The influences of parameters (i.e. phase difference, frequency difference, and amplitude ratio) on the power are investigated numerically. With the increase of phase difference, the power can be fluctuated in a wide range at all conditions. Three typical characteristics of the power appear under the effects of frequency difference and amplitude ratio. With the increase of amplitude ratio, if the frequency difference is small, the power has two maximum values; and if the frequency difference is medium, there is a maximum value. Otherwise, the power monotonously decreases. The results can provide theoretical references for the selections of experimental parameters of sonoluminescence and sonochemistry in the dual-frequency acoustic field.
Go to article

Authors and Affiliations

Liang Lv
1
Kai Hu
2
Fei Liu
2
Yawei Li
2
Bing Cui
1

  1. School of Mechano-Electronic Engineering, Suzhou Vocational University, Suzhou, China
  2. Department of Sports Health and Art Education, Hebei Petroleum University of Technology, Chengde, China
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to compare the extended high-frequency (EHF) hearing thresholds (10–16 kHz) in tinnitus and non-tinnitus ears, in a group of 98 patients with unilateral tinnitus and normal hearing at standard audiometric frequencies, in a 0.125–8 kHz range. It was found that a total of 65 patients (66%) had a hearing loss (a threshold shift >20 dB HL) in the EHF range and the EHF hearing loss occurred more frequently in the tinnitus ear than in the non-tinnitus ear. The data also indicate that the EHF thresholds increased with the patient’s age and were in most patients higher in the tinnitus ear than in the non-tinnitus ear.
Go to article

Authors and Affiliations

Lidija Ristovska
1
Zora Jachova
2

  1. City General Hospital “8th September” Department of Otorhinolaryngology, Division of Audiology, Skopje, North Macedonia
  2. Ss. Cyril and Methodius University in Skopje, Faculty of Philosophy, Institute of Special Education and Rehabilitation, Skopje, North Macedonia

This page uses 'cookies'. Learn more