Details
Title
Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency responseJournal title
Archive of Mechanical EngineeringYearbook
2019Volume
vol. 66Issue
No 4Affiliation
Bastanfar, Marzie : Department of Mechanical Engineering, University of Zanjan, Zanjan, Iran. ; Hosseini, Seyyed Amirhosein : Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University,Buein Zahra, Qazvin, Iran. ; Sourki, Reza : School of Engineering, The University of British Columbia, Kelowna, Canada. ; Khosravi, Farshad : Department of Aerospace Engineering, K.N. Toosi University of Technology, Tehran, Iran.Authors
Keywords
flexoelectricity ; surface effects ; imperfections ; resonance frequency ; nanobeamDivisions of PAS
Nauki TechniczneCoverage
417-437Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] S.M. Tanner, J.M. Gray, C.T. Rogers, K.A. Bertnees, and N.A. Sanford. High-Q GaN nanowire resonators and oscillators. Applied Physics Letters, 91(20):203117, 2007. 10.1063/1.2815747.[2] W.S. Su,Y.F. Chen, C.L. Hsiao, and L.W. Tu. Generation of electricity in GaN nanorods induced by piezoelectric effect. Applied Physics Letters, 90(6):063110, 2007. 10.1063/1.2472539.
[3] B. Kumar and S.-W. Kim. Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy, 1(3):342–355, 2012. 10.1016/j.nanoen.2012.02.001.
[4] Z.L. Wang and J. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771):242–246, 2006. 10.1126/science.1124005.
[5] X.Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z.L.Wang. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 6(12):2768–2772, 2006. 10.1021/nl061802g.
[6] S.C. Lao, Q. Kuang, Z.L.Wang, M.C. Park, and Y. Deng. Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Applied Physics Letters, 90(26): 262107, 2007. 10.1063/1.2748097.
[7] A. Chaipanich. Effect of PZT particle size on dielectric and piezoelectric properties of PZT–cement composites. Current Applied Physics, 7(5):574–577, 2007. 10.1016/j.cap.2006.11.036.
[8] H. Farokhi, A.K. Misra, and M.P. Païdoussis. A new electrostatic load model for initially curved carbon nanotube resonators: pull-in characteristics and nonlinear resonant behaviour. Nonlinear Dynamics, 88(2):1187–1211, 2017. 10.1007/s11071-016-3304-1.
[9] Z. Zhang, Z.Yan, and L. Jiang. Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. Journal of Applied Physics, 116(1): 014307, 2014. 10.1063/1.4886315.
[10] X. Liang, S. Hu, and S. Shen. Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Materials and Structures, 23(3):035020, 2014. 10.1088/0964-1726/23/3/035020.
[11] Z. Yan. Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates. Smart Materials and Structures, 25(3): 035017, 2016. 10.1088/0964-1726/25/3/035017.
[12] T.D. Nguyen, S. Mao, Y. Yeh , P.K. Purohit, and M.C. McAlpine. Nanoscale flexoelectricity. Advanced Materials, 25(7):946–974, 2013. 10.1002/adma.201203852.
[13] L. Qi, S. Zhou, and A. Li. Size-dependent bending of an electro-elastic bilayer nanobeam due to flexoelectricity and strain gradient elastic effect. Composite Structures, 135:167–175, 2016. 10.1016/j.compstruct.2015.09.020.
[14] R. Zhang, X. Liang, and S. Shen. A Timoshenko dielectric beam model with flexoelectric effect. Meccanica, 51(5):1181–1188, 2016. 10.1007/s11012-015-0290-1.
[15] Z. Yan and L.Y. Jiang. Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. Journal of Applied Physics. 113(19):194102, 2013. 10.1063/1.4804949.
[16] Z. Zhang. Size-dependent Electroelastic Properties of Piezoelectric Nanoplates. Master Thesis, The University of Western Ontario, Canada, 2014.
[17] X. Liang, S.Hu, and S. Shen. Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Materials and Structures, 24(10):105012, 2015. 10.1088/0964-1726/24/10/105012.
[18] Y. Tadi Beni. Size-dependent analysis of piezoelectric nanobeams including electromechanical coupling. Mechanics Research Communications, 75: 67–80, 2016. 10.1016/j.mechrescom.2016.05.011.
[19] R. Sourki and S.A.H. Hoseini. Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory. Applied Physics A, 122(4):413, 2016. 10.1007/s00339-016-9961-6.
[20] R. Sourki and S.A. Hosseini. Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam. The European Physical Journal Plus, 132(4):184, 2017. 10.1140/epjp/i2017-11458-0.
[21] S.J. Behrouz, O. Rahmani, and S.A. Hosseini. On nonlinear forced vibration of nano cantileverbased biosensor via couple stress theory. Mechanical Systems and Signal Processing, 128: 19–36, 2019. 10.1016/j.ymssp.2019.03.020.
[22] B.A. Hamidi, S.A.H. Hosseini, R. Hassannejad, and F. Khosravi. An exact solution on gold microbeam with thermoelastic damping via generalized Green-Naghdi and modified couple stress theories. Journal of Thermal Stresses, 2019. 10.1080/01495739.2019.1666694.
[23] S.A Hosseini and O. Rahmani. Modeling the size effect on the mechanical behavior of functionally graded curved micro/nanobeam. Thermal Science and Engineering, 1(2):1–20, 2018. 10.24294/tse.v1i2.400.
[24] O. Rahmani, M. Shokrnia, H. Golmohammadi, and S.A.H. Hosseini. Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory. The European Physical Journal Plus, 133(2):42, 2018. 10.1140/epjp/i2018-11868-4.
[25] M. Ghadiri, S. Hosseini, M. Karami, and M. Namvar. In-plane and out of plane free vibration of U-shaped AFM probes based on the nonlocal elasticity. Journal of Solid Mechanics, 10(2):285–299, 2018.
[26] S. Hosseini and O. Rahmani. Bending and vibration analysis of curved FG nanobeams via nonlocal Timoshenko model. Smart Construction Research, 2(2):1–17, 2018.
[27] M. Namvar, E. Rezaei, S.A. Hosseini, and M. Ghadiri. Experimental and analytical investigations of vibrational behavior of U-shaped atomic force microscope probe considering thermal loading and the modified couple stress theory. The European Physical Journal Plus, 132(6): 247, 2017. 10.1140/epjp/i2017-11518-5.
[28] V. Refaeinejad, O. Rahmani, and S.A.H. Hosseini. Evaluation of nonlocal higher order shear deformation models for the vibrational analysis of functionally graded nanostructures. Mechanics of Advanced Materials and Structures, 24(13):1116–1123, 2017. 10.1080/15376494.2016.1227496.
[29] M. Zarepour, S.A.H. Hosseini, and A.H. Akbarzadeh. Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen’s differential model. Applied Mathematical Modelling, 69:563–582, 2019. 10.1016/j.apm.2019.01.001.
[30] C. Zhang, J. Zhu, W. Chen, and Ch. Zhang. Two-dimensional theory of piezoelectric shells considering surface effect. European Journal of Mechanics – A/Solids, 43:109–117, 2014. 10.1016/j.euromechsol.2013.09.007.
[31] Z. Zhang and L. Jiang. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. Journal of Applied Physics, 116(13):134308, 2014. 10.1063/1.4897367.
[32] Z. Yan and L. Jiang. Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness. Journal of Physics D: Applied Physics, 45(25):255401, 2012. 10.1088/0022-3727/45/25/255401.
[33] G.Y. Huang and S.W. Yu. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Physica Status Solidi b, 243(4):R22-R24, 2006. 10.1002/pssb.200541521.
[34] Y.S. Li and E. Pan. Bending of a sinusoidal piezoelectric nanoplate with surface effect. Composite Structures, 136:45–55, 2016. 10.1016/j.compstruct.2015.09.047.
[35] M.S. Chiu. and T. Chen. Effects of high-order surface stress on static bending behavior of nanowires. Physica E: Low-dimensional Systems and Nanostructures, 44(3):714–718, 2011. 10.1016/j.physe.2011.11.016.
[36] A.H. Hosseini, O. Rahmani, M. Nikmehr, I.F. Golpayegani. Axial vibration of cracked nanorods embedded in elastic foundation based on a nonlocal elasticity model. Sensor Letters, 14(10):1019–1025, 2016. 10.1166/sl.2016.3575.
[37] O. Rahmani, S.A.H. Hosseini, M.H.N. Moghaddam, and I.F. Golpayegani. Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: An analytical study. International Journal of Applied Mechanics, 07(03):1550036, 2015. 10.1142/S1758825115500362.
[38] J. Xiao, Y. Xu, and F. Zhang. A rigorous solution for the piezoelectric materials containing elliptic cavity or crack with surface effect. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 96(5):633–641, 2016. 10.1002/zamm.201400232.
[39] K.F. Wang, and B.L. Wang. Nonlinear fracture mechanics analysis of nano-scale piezoelectric double cantilever beam specimens with surface effect. European Journal of Mechanics – A/Solids, 56:12–18, 2016. 10.1016/j.euromechsol.2015.10.002.
[40] H.S. Nan and B.L. Wang. Effect of crack face residual surface stress on nanoscale fracture of piezoelectric materials. Engineering Fracture Mechanics, 110:68–80, 2013. 10.1016/j.engfracmech.2013.08.002.
[41] S. Shen and S. Hu. A theory of flexoelectricity with surface effect for elastic dielectrics. Journal of the Mechanics and Physics of Solids, 58(5):665–677, 2010. 10.1016/j.jmps.2010.03.001.
[42] M. E. Gurtin and A.I. Murdoch. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4):291–323, 1975. 10.1007/BF00261375.
[43] J. Zhang, C. Wang, and S. Adhikari. Surface effect on the buckling of piezoelectric nanofilms. Journal of Physics D: Applied Physics, 45(28):285301, 2012. 10.1088/0022-3727/45/28/285301.
[44] A. Abdollahi, C. Peco, D. Millán, M. Arroyo, and I. Arias. Computational evaluation of the flexoelectric effect in dielectric solids. Journal of Applied Physics, 116(9):093502, 2014. 10.1063/1.4893974.
[45] Z. Zhang and L. Jiang. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. Journal of Applied Physics, 116(13):134308, 2014. 10.1063/1.4897367.
[46] T. Chen, M.S. Chiu, and C.N. Weng. Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 100(7):074308, 2006. 10.1063/1.2356094.
[47] Z. Yan and L. Jiang. Influence of surface effects and flexoelectricity on vibration of piezoelectric nanobeams. 13th International Conference on Fracture, Beijing, China, 16–21 June, 2013.
[48] X. Liang, S. Hu, and S. Shen. A new Bernoulli–Euler beam model based on a simplified strain gradient elasticity theory and its applications. Composite Structures, 111:317–323, 2014. 10.1016/j.compstruct.2014.01.019.
[49] Z. Yan and L.Y. Jiang. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 22(24):245703, 2011. 10.1088/0957-4484/22/24/245703.
[50] J. Loya, J. López-Puente, R. Zaera, and J. Fernández-Sáez. Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. Journal of Applied Physics, 10(4):044309, 2009. 10.1063/1.3068370.
[51] M. Akbarzadeh Khorshidi and M. Shariati. Investigation of flexibility constants for a multispring model: a solution for buckling of cracked micro/nanobeams. Journal of Theoretical and Applied Mechanics, 57(1):49–58, 2019.
[52] L.L. Zhang, J.X. Liu, X.Q. Fang, and G.Q. Nie. Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. European Journal of Mechanics – A/Solids, 46:22–29, 2014. 10.1016/j.euromechsol.2014.01.005.
[53] Y.M. Yue, K.Y. Xu, and T. Chen. A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Composite Structures, 136:278–286, 2016. 10.1016/j.compstruct.2015.09.046.
[54] J.A. Loya, J. Aranda-Ruiz, and J. Fernández-Sáez. Torsion of cracked nanorods using a nonlocal elasticity model. Journal of Physics D: Applied Physics, 47(11):115304, 2014. 10.1088/0022-3727/47/11/115304.