Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the possibilities of neural network application in recognition of rotor blade faults. Computer calculated data of rotor response due to faults were used for neural network training. The rotor was modeled by elastic axes with distribution of Jumped masses. The rotor defects were simulated by changing aerodynamic, inertial or stiffness properties of one of the blades. Time results were subjected to spectral analysis for the purpose of neural networks training.
Go to article

Authors and Affiliations

Jarosław Stanisławski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of simulation method for prediction of helicopter H-V zone envelope in the case of engine power loss. Depending on the loss rate of available power, the emergency maneuver for flight continuation is calculated, or the autorotation landing is predicted. The realization of an airborne device with in-built calculating procedure and graphic presentation of H-V zone predicted limits can improve safety level of helicopter flight, and can cue the pilot to make proper decision in emergency conditions. The results of emergency maneuver simulation were verified by comparing them with flight tests of Mi-2Plus helicopter for partial power unit failure, and with records of SW-4 helicopter autorotation landing. The operation of measurement-recording module, which consists of GPS receiver, inertial measurement unit and a computer of PC-104 standard, was checked during flight tests of a radio-controlled helicopter model.

Go to article

Authors and Affiliations

Jarosław Stanisławski
Download PDF Download RIS Download Bibtex

Abstract

Helicopters of the Medical Air Rescue (LPR) help transport the patients to large hospitals quickly. The requirements for the space around the helipad and flight safety mean that more elevated helipads than ground helipads are built at hospitals located in proximity to the city centres. Elevated helipads can vary in design and location depending on the opportunities offered by the hospital buildings and their surroundings. The Vibroacoustic Laboratory of the Warsaw Institute of Aviation took measurements to determine the impact of a helicopter on a hospital elevated helipad during landing or taking off. Helicopter landings are neither frequent nor long, however, they can have a significant impact on a helipad structure, the hospital building itself and its patients, staff or equipment. The impact of the helicopter includes both the noise, vibrations transmitted by the helicopter chassis and air pulsations under the rotor (low-frequency ones). This paper discusses some methods used for measuring vibration properties of several elevated helipads and building recorded during the landing and take-off of the EC135 helicopter. The sample results of such tests are also presented. The tests discussed can be used to verify both the assumptions and calculations referring to helipads and to meet the requirements of the standards in the field of noise and vibrations.
Go to article

Bibliography

[1] Act dated 8 September 2006 r. on National Medical Rescue (J. of L. 191 No. 1410).
[2] Regulation of the Min. of Health, 27 June 2019 on the hospital emergency department (J. of L. 2019 No. 1213)
[3] Federal Aviation Administration, US Department of Transportation, 2012, Heliport Design -AC 150/5390-2c, Chapter 4 - Hospital Heliports.
[4] K. Wąchalski, „Wyniesione lądowiska dla helikopterów na budynkach szpitalnych” (Elevated helipads on hospital buildings), „Inżynier Budownictwa”, Warsaw, 2018.
[5] K. Wąchalski, “Assessment of the current construction conditions for elevated helipad on hospital buildings in Poland”, Warsaw, Prace Instytutu Lotnictwa No. 3 (244), pp 189–201, 2016, http://dx.doi.org/10.5604/05096669.1226158
[6] Polish Standard PN-B-02171_2017 “Ocena wpływu drgań na ludzi w budynkach” (Assessment of the effects of vibration on people in buildings).
[7] S. Cieślak, W. Krzymień, “Initial analysis of helicopter impact on hospital helipads”, Transactions of the Institute of Aviation (256), Warsaw, pp 14 –23, 2019, https://doi.org/10.2478/tar-2019-0014
[8] W. Krzymień, S. Cieślak, “Investigation of the vibration properties of concrete elevated hospital helipads”, Vibrations in Physical Systems No. 31, Poznan, 2020.
[9] M. Szmidt, W. Krzymień, S. Cieślak, “Vibration properties of steel constructed hospital elevated helipads”, Transactions on Aerospace Research (260), Warsaw, pp 11–20 , 2020. https://doi.org/10.2478/tar-2020-0013
[10] Eric E. Ungar, “Vibration criteria for healthcare facility floors”, Sound & Vibration, 41(9) pp. 26–27, 2007.
[11] P. Ruchała, K. Grabowska “Problems of an aerodynamic interference between helicopter rotor slipstream and an elevated heliport”, Journal of KONES Powertrain and Transport, Vol. 26, No. 3, 2019, http://dx.doi.org/10.2478/kones-2019-0072
[12] A. Dziubiński, A. Sieradzki, R. Żurawski, “The elevated helipads – study of wind and rotor wash influence for most common configuration types”, 44th European Rotorcraft Forum, Netherlands, 2018.
Go to article

Authors and Affiliations

Wiesław Krzymień
1
ORCID: ORCID

  1. Łukasiewicz Research Network – Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a robust control technique for small-scale unmanned helicopters to track predefined trajectories (velocities and heading) in the presence of bounded external disturbances. The controller design is based on the linearized state-space model of the helicopter. The multivariable dynamics of the helicopter is divided into two subsystems, longitudinallateral and heading-heave dynamics respectively. There is no strong coupling between these two subsystems and independent controllers are designed for each subsystem. The external disturbances and model mismatch in the longitudinal-lateral subsystem are present in all (matched and mismatched) channels. This model mismatch and external disturbances are estimated as lumped disturbances using extended disturbance observer and an extended disturbance observer based sliding mode controller is designed for it to counter the effect of these disturbances. In the case of heading-heave subsystem, external disturbances and model mismatch only occur in matched channels so a second order sliding mode controller is designed for it as it is insensitive to matched uncertainties. The control performance is successfully tested in Simulink.

Go to article

Authors and Affiliations

Ihsan Ullah
Hai-Long Pei

This page uses 'cookies'. Learn more