Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In situ monitoring of the thickness of thin diamond films during technological processes is important because it allows better control of deposition time and deeper understanding of deposition kinetics. One of the widely used techniques is laser reflectance interferometry (LRI) which enables non-contact measurement during CVD deposition. The authors have built a novel LRI system with a 405 nm laser diode which achieves better resolution compared to the systems based on He-Ne lasers, as reported so far. The system was used for in situ monitoring of thin, microcrystalline diamond films deposited on silicon substrate in PA-CVD processes. The thickness of each film was measured by stylus profilometry and spectral reflectance analysis as a reference. The system setup and interferometric signal processing are also presented for evaluating the system parameters, i.e. measurement uncertainty, resolution and the range of measurable film thickness.

Go to article

Authors and Affiliations

Maciej Kraszewski
Robert Bogdanowicz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents analysis of the vibrational environment on scaffoldings. It is based on the results obtained in the project considering workers safety on scaffoldings. The total number of 120 façade scaffoldings was analysed over a period of two years. One of the issues considered in this project was the vibrations influence on scaffoldings and workers safety. The values of natural frequencies were obtained based on in-situ measurements of free vibrations. Analysis of the tests results made it possible to verify the elaborated numerical models. Values of natural frequencies and displacements in mode shaped from numerical modal analyses were compared with test results. Measurements of forced vibrations were also made with various sources of vibrations active at scaffoldings. The detailed numerical dynamic analysis was performed considering excitation forces variable in time. The obtained results were compared with allowable values according to the appropriate Polish standards. Most influential sources of vibrations for human comfort were indicated in the conclusions.

Go to article

Authors and Affiliations

Jarosław Bęc
ORCID: ORCID
Ewa Błazik-Borowa
ORCID: ORCID
Paulina Jamińska-Gadomska
Tomasz Lipecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The methane hazard is one of the most dangerous phenomena in hard coal mining. In a certain range of concentrations, methane is flammable and explosive. Therefore, in order to maintain the continuity of the production process and the safety of work for the crew, various measures are taken to prevent these concentration levels from being exceeded. A significant role in this process is played by the forecasting of methane concentrations in mine headings. This very problem has been the focus of the present article. Based on discrete measurements of methane concentration in mine headings and ventilation parameters, the distribution of methane concentration levels in these headings was forecasted. This process was performed on the basis of model-based tests using the Computational Fluid Dynamics (CFD). The methodology adopted was used to develop a structural model of the region under analysis, for which boundary conditions were adopted on the basis of the measurements results in real-world conditions. The analyses conducted helped to specify the distributions of methane concentrations in the region at hand and determine the anticipated future values of these concentrations. The results obtained from model-based tests were compared with the results of the measurements in realworld conditions. The methodology using the CFD and the results of the tests offer extensive possibilities of their application for effective diagnosis and forecasting of the methane hazard in mine headings.

Go to article

Authors and Affiliations

Jarosław Brodny
Magdalena Tutak

This page uses 'cookies'. Learn more