Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

One of the most hazardous places in mines are longwall areas. They emit a considerable amount of methane to the ventilation air. The emission depends on many but mostly known factors. The article presents the research results on changes in the methane concentration along the longwall excavations and longwall. The distributions were obtained based on a measurement experiment at the ZG Brzeszcze mine in Poland. The author’s research aimed to experimentally determine the concentration of methane as a function of the length of excavation for the longwall excavations and longwall. As a result, methane concentration trends along the excavations were obtained. The conclusions show the pros and cons of the method used, and it allows to set the right direction in the development of measurement systems and sensors.
Go to article

Bibliography

[1] S .R. Deokar, J.S. Wakode, Coal Mine Safety Monitoring and Alerting System. International Research Journal of Engineering and Technology 4, 3, 2146-2149 (2017).
[2] D .A. Jakkan, P. Bhagat, Coal Mine Monitoring System Based on Wireless Technology and ARM . International Journal of Engineering Research 2, 6 (2013).
[3] M . Li, Y. Liu, Underground Coal Mine Monitoring with Wireless Sensor Networks. ACM Trans. Sen. Netw. 5, 1-29 (2009). DOI : https://doi.org/10.1145/1498915.1498916
[4] L . Liao, G. Lou, M. Chen, An Integrated RFID and Sensor System for Emergency Handling in Underground Coal Mines Environments. In J. Zheng, S. Mao, S.F. Midkiff, H. Zhu, (Eds.); Ad Hoc Networks, Springer Berlin Heidelberg 28, 818-824 (2010). DOI : https://doi.org/10.1007/978-3-642-11723-7_56 [5] F . Ma, Sensor Networks-Based Monitoring and Fuzzy Information Fusion System for Underground Gas Disaster. In Proceedings of the 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, 596-600 (2012).
[6] M .A. Moridi, M. Sharifzadeh, Y. Kawamura, H.D. Jang, Development of Wireless Sensor Networks for Underground Communication and Monitoring Systems (the Cases of Underground Mine Environments). Tunneling and Underground Space Technology 73, 127-138 (2018). DOI : https://doi.org/10.1016/j.tust.2017.12.015
[7] A . Zagórecki, Application of Sensor Fusion and Data Mining for Prediction of Methane Concentration in Coal Mines. Mining – Informatics, Automation and Electrical Engineering 43, 4 (2015).
[8] H . Zhao, W. Yang, An Emergency Rescue Communication System and Environmental Monitoring Subsystem for Underground Coal Mine Based on Wireless Mesh Network. Int. J. Distrib. Sens. N. 14, (2018). DOI : https://doi.org/10.1177/1550147718805935
[9] Polish Legal Act, Dz.U. 2017 poz. 1118, Rozporządzenie Ministra Energii z Dnia 23 Listopada 2016 r.
[10] A . Tomczyk, K. Rutecki, Monitorowanie i Kontrola Zmian Ciśnienia Atmosferycznego Kopalni dla Potrzeb Bezpieczeństwa. Mechanizacja i Automatyzacja Górnictwa 47, 7, 99-107 (2009).
[11] S . Wasilewski, Modern Systems of Gas Hazard Monitoring in Polish Hard Coal Mines. Arch. Min. Sci. 53, 4, 511-524 (2008).
[12] H . Badura, D. Araszczuk, Analiza Zagrożenia Metanowego w Ścianie G-6 w Pokładzie 412\lg+\ld i 412\lg w KWK „A” – Studium Przypadku. Przegląd Górniczy 73, 47-55 (2017).
[13] W . Dziurzyński; P. Skotniczny, J. Krawczyk, M. Gawor, T. Pałka, P. Ostrogórski, J. Kruczkowski, J. Janus, Wytyczne Rozmieszczenia Anemometrów Stacjonarnych Wzdłuż Długości Wyrobiska Kopalni jak i w Samym Polu Przekroju Poprzecznego Wyrobiska. In: Zasady pomiarów przepływów powietrza w wyrobiskach kopalnianych. Wybrane sposoby kontroli i kalibracji przyrządów pomiarowych (2017).
[14] J. Kruczkowski, Rozkład Stężeń Metanu w Wyrobiskach Przyścianowych. In Zagrożenia aerologiczne w kopalniach węgla kamiennego – profilaktyka, zwalczanie, modelowanie, monitoring; Główny Instytut Górnictwa (2013).
[15] P. Skotniczny, Transient States in the Flow of the Air-Methane Mixture at the Longwall Outlet, Induced by a Sudden Methane Outflow. Arch. Min. Sci. 59, 4, 887-896 (2014). DOI : https://doi.org/10.2478/amsc-2014-0061
[16] A . Zagórecki, Prediction of Methane Outbreaks in Coal Mines from Multivariate Time Series Using Random Forest. In Proceedings of the Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing; Y. Yao, Q. Hu, H. Yu, J.W. Grzymala-Busse, (Eds.) Springer International Publishing: Cham, 494-500 (2015).
[17] H . Badura, A. Niewiadomski, Jednodniowe prognozy średniego stężenia metanu na wylocie z rejonu wentylacyjnego jako podstawa do doboru środków profilaktyki metanowej – studium przypadku. Przegląd Górniczy 71, 12 (2015).
[18] M . Uszko, L. Kloc, M. Szarafiński, H. Potoczek, Zagrożenia Naturalne w Kopalniach Kompanii Węglowej SA . Część III . Zagrożenie Metanowe. Wiadomości Górnicze 65, 1 (2014).
[19] P. Skotniczny, P. Ostrogórski, Three-Dimensional Air Velocity Distributions in the Vicinity of a Mine Heading’s Sidewall. Arch. Min. Sci. 63, 2, 335-352 (2018). DOI : https://doi.org/10.24425/122451
[20] https://www.wug.gov.pl/english/statistics, accessed: 17.11.2021.
[21] P. Ostrogórski, Sieć Ad Hoc Złożona z Metanomierzy Indywidualnych – Modelowanie i Symulacja. In 10 Szkoła Aerologii Górniczej (2019).
[22] J. Kruczkowski, P. Ostrogórski, Metanoanemometr SOM 2303. In Nowoczesne metody zwalczania zagrożeń aerologicznych w podziemnych wyrobiskach górniczych, Główny Instytut Górnictwa, 117-127 (2015).
Go to article

Authors and Affiliations

Piotr Ostrogórski
1
ORCID: ORCID
Przemysław Skotniczny
1
ORCID: ORCID
Mieczysław Pucka
2

  1. Strata Mechanics Institute, Polish Academy of Sciences, 27 Reymonta Str., 30-059 Kraków, Poland
  2. Tauron Wydobycie S.A. ZG Brzeszcze, ul. Kościuszki 1, 32-620 Brzeszcze, Poland

This page uses 'cookies'. Learn more