Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Iterative Learning Control (ILC) is a well-known method for control of systems performing repetitive jobs with high precision. This paper presents Constrained Output ILC (COILC) for non-linear state space constrained systems. In the existing literature there is no general solution for applying ILC to such systems. This novel method is based on the Bounded Error Algorithm (BEA) and resolves the transient growth error problem, which is a major obstacle in applying ILC to non-linear systems. Another advantage of COILC is that this method can be applied to constrained output systems. Unlike other ILC methods the COILC method employs an algorithm that stops the iteration before the occurrence of a violation in any of the state space constraints. This way COILC resolves both the hard constraints in the non-linear state space and the transient growth problem. The convergence of the proposed numerical procedure is proved in this paper. The performance of the method is evaluated through a computer simulation and the obtained results are compared to the BEA method for controlling non-linear systems. The numerical experiments demonstrate that COILC is more computationally effective and provides better overall performance. The robustness and convergence of the method make it suitable for solving constrained state space problems of non-linear systems in robotics.

Go to article

Authors and Affiliations

Kaloyan Yovchev
Kamen Delchev
Evgeniy Krastev
Download PDF Download RIS Download Bibtex

Abstract

In order to control joints of manipulators with high precision, a position tracking control strategy combining fractional calculus with iterative learning control and sliding mode control is proposed for the control of a single joint of manipulators. Considering the coupling between joints of manipulators, a fractional-order iterative sliding mode cross-coupling control strategy is proposed and the theoretical proof of its progressive stability is given. The paper takes a two-joint manipulator as the research object to verify the control strategy of a single-joint manipulator. The results show that the control strategy proposed in this paper makes the two-joint mechanical arm chatter less and the tracking more accurate. The synchronous control of the manipulator is verified by a three-joint manipulator. The results show that the angular displacement adjustment times of the three-joint manipulator are 0.11 s, 0.31 s and 0.24 s, respectively. 3.25 s > 5 s, 3.15 s of a PD cross-coupling control strategy; 2.85 s, 2.32 s, 4.22 s of a PD iterative cross-coupling control strategy; 0.14 s, 0.33 s, 0.28 s of a fractional-order sliding mode cross-coupling control strategy. The root mean square error of the position error of the designed control strategy is 6.47 × 10-6 rad, 3.69 × 10-4 rad, 6.91 × 10-3 rad, respectively. The root mean square error of the synchronization error is 3.96 × 10-4 rad, 1.36 × 10-3 rad, 7.81 × 10-3 rad, superior to the other three control strategies. The results illustrate the effectiveness of the proposed control method.

Go to article

Authors and Affiliations

Xin Zhang
Wen-Ru Lu
Liang Zhang
Wen-Bo Xu
Download PDF Download RIS Download Bibtex

Abstract

In multi-axis motion control systems, the tracking errors of single axis load and the contour errors caused by the mismatch of dynamic characteristics between the moving axes will affect the accuracy of the motion control system. To solve this issue, a biaxial motion control strategy based on double-iterative learning and cross-coupling control is proposed. The proposed control method improves the accuracy of the motion control system by improving individual axis tracking performance and contour tracking performance. On this basis, a rapid control prototype (RCP) is designed, and the experiment is verified by the hardware and software platforms, LabVIEW and Compact RIO. The whole design shows enhancement in the precision of the motion control of the multiaxis system. The performance in individual axis tracking and contour tracking is greatly improved.

Go to article

Authors and Affiliations

Wan Xu
Jie Hou
Wei Yang
Cong Wang
Download PDF Download RIS Download Bibtex

Abstract

The aim of the studywas to find an effective method of ripple torque compensation for a direct drive with a permanent magnet synchronous motor (PMSM) without time-consuming drive identification. The main objective of the research on the development of a methodology for the proper teaching a neural network was achieved by the use of iterative learning control (ILC), correct estimation of torque and spline interpolation. The paper presents the structure of the drive system and the method of its tuning in order to reduce the torque ripple, which has a significant effect on the uneven speed of the servo drive. The proposed structure of the PMSM in the dq axis is equipped with a neural compensator. The introduced iterative learning control was based on the estimation of the ripple torque and spline interpolation. The structurewas analyzed and verified by simulation and experimental tests. The elaborated structure of the drive system and method of its tuning can be easily used by applying a microprocessor system available now on the market. The proposed control solution can be made without time-consuming drive identification, which can have a great practical advantage. The article presents a new approach to proper neural network training in cooperation with iterative learning for repetitive motion systems without time-consuming identification of the motor.

Go to article

Authors and Affiliations

Adrian Wójcik
Tomasz Pajchrowski

This page uses 'cookies'. Learn more