Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 87
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Dratów, Krzczeń and Tomaszne lakes are linked by means of Wieprz-Krzna Canal. On the other hand, Bikcze, Mytycze and Plotycze lakes are not included in the water system of Wieprz-Krzna Canal. However, all these lakes are regarded as biologically valuable water reser-voirs forming Łęczyńsko-Włodawskie Lakeland. They are shallow eutrophic lakes with varied water surface, different catchment area and diversified structure of catchment management. The qualitative and quantitative composition of planktonic rotifers was studied in spring, summer and autumn of 2012 and 2013. The studies revealed the presence of 67 Rotifera species with their mean density ranging from 119 ind. dm-3 in Tomaszne lake to 1441 ind. dm-3 in Bikcze lake. Dominants included few very common species of Brachionus angularis, Keratella cochlearis, Keratella cochlearis tecta, Keratella quadrata, Polyartchra vulgaris. Dominance structure and species diversity suggest a slightly higher ecological status of Mytycze lake, as compared to the remaining eutrophic reservoirs. Faunistic differences observed among rotifer assemblages inhabiting individual lakes were significantly bigger than those registered in the successive study years within the area of individual lakes. This property referred to all the reservoirs, both the ones linked with the water system of the canal and the lakes not included in the canal system. Bigger faunistic differences occurred among rotifer assemblages inhabiting the lakes of Wieprz-Krzna Canal sys-tem, as compared with the assemblages found in the lakes not included in the system.
Go to article

Authors and Affiliations

Andrzej Demetraki-Paleolog
Joanna Sender
Marcin Kolejko
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study presented in the article is to implement modern hydrographic characteristics of freshwater of the Shatsk Lakes (28 lakes in Volyn Polissya, Ukraine) by typing water bodies according to the requirements of the EU Water Framework Directive, assessment of the chemical composition of lake water and bottom sediments (sapropel), determination of the opportunity for their recreational use in the special status of the district as a national park. Despite the presence of the two large lakes (Svityaz – 26.2 km 2 and Pulemetske – 15.5 km 2), very small lakes with a water surface area of less than 0.5 km 2 (64%) are dominating in the Shatsk group. Mineralisation of calcium-hydrocarbonate lake waters is 115–303 mg∙dm –3 and calcium-sulphate aqueous extract of sapropel is – 318–1451 mg∙dm –3. Using a Piper diagram, it was found that there is genetic homogeneity between surface and groundwater, indicating a significant share of groundwater in the water supply of lakes. There are eight species of sapropel deposits in 19 lakes of the district. A wide range of chemical composition and physical and mechanical properties of sapropel deposits of the Shatsk Lakes allow us to consider them as an important resource for agriculture and industry. We found that sapropel from Shatsk Lakes meets the requirements for therapeutic mud and can be used for therapeutic and health purposes.
Go to article

Authors and Affiliations

Valentyn Khilchevskyi
1
ORCID: ORCID
Leonid Ilyin
2
ORCID: ORCID
Mykhailo Pasichnyk
2
ORCID: ORCID
Myroslava Zabokrytska
2
ORCID: ORCID
Olga Ilyina
2
ORCID: ORCID

  1. Taras Shevchenko National University of Kyiv, Department of Hydrology and Hydroecology, Kyiv, Ukraine
  2. Lesya Ukrainka Volyn National University, Faculty of Geography, 13 Voli Avenue, 43025, Lutsk, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This phytoplankton study was conducted from May to September 2002, 2003 and 2005 during fountain-based water aeration in the pelagial of Jeziorak Mały urban lake in Poland. Differences in the abundance and biomass of phytoplankton groups (cyanobacteria, diatoms, chlorophytes, dinoflagellates, chrysophytes and cryptomonads) related to physico-chemical water parameters were analyzed at the fountain and in the lake centre. Fountain water-mixing changed phytoplankton growth likely by decreasing water temperature, oxygenation and nutrient concentrations. These induced a disturbance in the cyanobacteria and stimulated growth of phytoplankton groups in the water column. High phytoplankton abundance at 1 m depth at the fountain could relate with phytoplankton sinking in the water column. This additional water mixing also intensified sedimented organic matter decomposition, thus enhancing nutrient uptake by phytoplankton. These results are important for future shallow urban lake management.
Go to article

Authors and Affiliations

Elżbieta Zębek
Download PDF Download RIS Download Bibtex

Abstract

The oxygen and thermal conditions in Lake Ińsko were examined in years 1999-2000. Lake Ińsko is one of a dynamictic type and its waters are mixed twice a year. This lake has a strong thermal and oxygen stratification. The oxygen conditions in the lake are very good because the total deficiency of oxygen appears only in summer, on the depth below 30 m, and only in the areas where the influence of town of Ińsko is the strongest. During autumn and winter circulation the concentration of oxygen near the bottom reaches 5 mg O2 dm-3. The concentration of oxygen in the water reflects favorable conditions of biomass production, including primary production of phytoplankton in epilimnion of Lake Ińsko. The intensive development of algas has considerably influenced the transparency of water. On the background of vertical thermal and oxygen differences during the summer there were also differences in the reactions of water.
Go to article

Authors and Affiliations

Jan Trojanowski
Agnieszka Parzych
Download PDF Download RIS Download Bibtex

Abstract

The aims of this study were to identify the taxonomic diversity and abundance of psammonic ciliate communities in mesotrophic and eutrophic lakes (Łęczna-Włodawa Lakeland, eastern Poland). The effect of selected physical and chemical water parameters on ciliates community was also analysed. Psammon samples were collected during three seasons: spring, summer and autumn of 2010. In each lake, in the psammolittoral, samples were collected in the euarenal, higroarenal, and hydroarenal zones. A total of 53 ciliate taxa were recorded. The highest value of the Shannon-Weaver index was recorded in summer in eutrophic lake (2.79). At the same time in mesotrophic lake, a lower value of the index was determined (0.79). The mean numbers of ciliates ranged from 516 ind.cm-3 in the eutrophic lake to 191 ind. cm-3 in the mesotrophic lake. In eutrophic lake, the highest number of ciliates was recorded in the euarenal (649 ind. cm-3), and the lowest in the higroarenal (425 ind. cm-3). In the mesotrophic lake, the highest average numbers were determined in the higroarenal (235 ind. cm-3), and the lowest in the hydroarenal (155 ind. cm-3). Irrespective of the lake trophy, Hymenostomata (Paramecium sp., Glaucoma sp., Uronema nigricans) occurred in the highest numbers (from 13 to 95%). The results demonstrated that N-NH4, P-PO4 and TOC can strongly regulate the abundance and taxonomic composition of ciliates. The strongest correlations between numbers of ciliates and physical and chemical water parameters were observed in the higro- and hydroarenal zones of the eutrophic lake.

Go to article

Authors and Affiliations

T. Mieczan
D. Nawrot
Download PDF Download RIS Download Bibtex

Abstract

Dratów, Krzczeń and Tomaszne lakes are among environmentally valuable reservoirs in Poland and Łęczyńsko-Włodawskie Lakeland. These are shallow eutrophic reservoirs of varied water surface. What they have in common is the fact that they are linked by Wieprz-Krzna Canal. The main aim of the present study was to determine the degree of faunistic similarity between planktonic rorifer assemblages inhabiting these particular lakes. The authors were interested to find out whether linking the lakes with the canal, as well as currently applied water exchange could affect the degree of faunistic similarity occurring between these lakes. Physical and chemi-cal analyses, as well as the studies of planktonic rotifers were carried out in the spring, summer and autumn of 2012 and 2013. They included determining the qualitative composition and the density of planktonic rotifers. The studies resulted in finding 50 species of Rotifera, with mean density ranging from 75 to 855 ind. dm-3. The dominants included the common species of Keratel-la cochlearis, Keratella cochlearis tecta, Keratella quadrata, Polyarthra vulgaris, Kellicottia longispina, Brachionus angularis, Ascomorpha odalis and Synchaeta pectinata. The results re-vealed high faunistic similarity among rotifer assemblages inhabiting a particular lake in different years, and high diversification occurring between the lakes compared in the work. The analyses showed that linking the lakes by Wieprz-Krzna Canal did not significantly affect the faunistic similarity of these particular lakes.
Go to article

Authors and Affiliations

Andrzej Demetraki-Paleolog
Marcin Kolejko
Joanna Sender
Download PDF Download RIS Download Bibtex

Abstract

Plastics are materials with many properties that make them extremely popular in everyday life and various industries. Studies show that plastic debris is global pollution and widespread in virtually all ecosystems. This study aimed to assess the coastal sediments of Ełckie Lake in terms of the presence of microplastics. Samples of sediments (n = 37) from the coastal zone of Ełckie Lake were drawn from different areas, including urban, rural, and tourist locations, and beaches. After the coastal sediment samples taking, they were subjected to density separation, filtration, and visual evaluation using the Olympus BX63 fluorescent microscope. Particles were classified according to the category of visible characteristics of microplastics including size, shape and colour. The results of the study showed the presence of microplastics in 84% of the examined coastal sediment samples of Ełckie Lake. Fibres, flakes, granules, and foils (films) had found in 58%, 45%, 32%, and 13% of the samples that contained microplastic, respectively. The majority of the detected microplastic was 0.5–1 mm in size and black was the dominant colour. Spatial variability was perceived in microplastic concentrations, giving premises to the assumption of dependence between local human activity and the content of particles.
Go to article

Bibliography

Andrady, A.L., 2011. Microplastics in the marine environment. Marine Pollution Bulletin 62, 1596–1605.

Andrady, A.L., Neal, M.A., 2009. Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1977–1984.

Ballent, A., Corcoran, P.L., Madden, O., Helm, P.A., Longstaffe, F.J., 2016. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Marine Pollution Bulletin 110, 383–395.

Bańkowska, A., 2007. Performance evaluation of the BIO-HYDRO structures in recultivation of the Elckie Lake. Przegląd Naukowy. Inżynieria i Kształtowanie Środowiska 16, 21–28 (in Polish with English summary).

Batel, A., Linti, F., Scherer, M., Erdinger, L., Braunbeck, T., 2016. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry 35, 1656–1666.

Claessens, M., Meester, S. De, Landuyt, L. Van, Clerck, K. De, Janssen, C.R., 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin 62, 2199–2204.

Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin 62, 2588–2597.

Collignon, A., Hecq, J.-H., Galgani, F., Collard, F., Goffart, A., 2014. Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica). Marine Pollution Bulletin 79, 293–298.

Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., Geissen, V., 2019. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment 671, 411–420.

da Costa, J.P., Duarte, A.C., Rocha-Santos, T.A.P., 2017. Microplastics – Occurrence, Fate and Behaviour in the Environment. Comprehensive Analytical Chemistry 75, 1–24.

Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin 44, 842–852.

Desforges, J.P.W., Galbraith, M., Ross, P.S., 2015. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean. Archives of Environmental Contamination and Toxicology 69, 320–330.

Ding, L., Mao, R. F., Guo, X., Yang, X., Zhang, Q., Yang, C., 2019. Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Science of the Total Environment 667, 427–434.

Duis, K., Coors, A., 2016. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe 28, 1–25.

Dümichen, E., Barthel, A.K., Braun, U., Bannick, C.G., Brand, K., Jekel, M., Senz, R., 2015. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Research 85, 451–457.

Dunalska, J.A., 2019. Lake restoration – theory and practice. Warszawa. Wydawnictwo Polskiej Akademii Nauk (in Polish with English summary).

Eerkes-Medrano, D., Thompson, R.C., Aldridge, D.C., 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research 75, 63–82.

Efimova, I., Bagaeva, M., Bagaev, A., Kileso, A., Chubarenko, I.P., 2018. Secondary microplastics generation in the sea swash zone with coarse bottom sediments: Laboratory experiments. Frontiers in Marine Science 5, 313.

Faure, F., Corbaz, M., Baecher, H., De Alencastro, L.F., 2012. Pollution due to plastics and microplastics in lake Geneva and in the Mediterranean sea. Archives des Sciences 65, 157–164.

Faure, F., Demars, C., Wieser, O., Kunz, M., De Alencastro, L.F., 2015. Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants. Environmental Chemistry 12, 582–591.

Fischer, E.K., Paglialonga, L., Czech, E., Tamminga, M., 2016. Microplastic pollution in lakes and lake shoreline sediments – a case study on Lake Bolsena and Lake Chiusi (central Italy). Environmental Pollution 213, 648–657.

Free, C.M., Jensen, O.P., Mason, S.A., Eriksen, M., Williamson, N.J., Boldgiv, B., 2014. High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin 85, 156–163.

GESAMP, 2015. Sources, fate and effects ofmicroplastics in the marine environment: a global assessment. London: IMO/FAO/UNESCO- IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection.

Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology 46, 3060–3075.

Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., Svendsen, C., 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment 586, 127–141.

Imhof, H.K., Ivleva, N.P., Schmid, J., Niessner, R., Laforsch, C., 2013. Contamination of beach sediments of a subalpine lake with microplastic particles. Current Biology 23, R867–R868.

Klein, S., Worch, E., Knepper, T.P., 2015. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine main area in Germany. Environmental Science and Technology 49, 6070–6076.

Lee, H., Shim, W.J., Kwon, J.H., 2014. Sorption capacity of plastic debris for hydrophobic organic chemicals. Science of the Total Environment 470–471, 1545–1552.

Lee, J., Hong, S., Song, Y.K., Hong, S.H., Jang, Y.C., Jang, M., Heo, N.W., Han, G.M., Lee, M.J., Kang, D., Shim, W.J., 2013. Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. Marine Pollution Bulletin 77, 349–354.

Lenz, R., Enders, K., Beer, S., Sørensen, T.K., Stedmon, C.A., 2016. Analysis of Microplastic in the Stomachs of Herring and Cod from the North Sea and the Baltic Sea. Lyngby: DTU Aqua 1–30.

Li, J., Liu, H., Paul Chen, J., 2018. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research 137, 362–374.

Lin, L., Zuo, L.Z., Peng, J.P., Cai, L.Q., Fok, L., Yan, Y., Li, H.X., Xu, X.R., 2018. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Science of the Total Environment 644, 375–381.

Magnusson, K., Eliasson, K., Fråne, A., Haikonen, K., Hultén, J., Olshammar, M., Stadmark, J., Voisin, A., 2016. Swedish sources and pathways for microplastics to the marine environment A review of existing data. IVL Swedish Environmental Research Institute,Report C 183, 1–87.

Mathalon, A., Hill, P., 2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Marine Pollution Bulletin 81, 69–79.

Moore, C.J., 2008. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research 108, 131–139.

Napper, I.E., Bakir, A., Rowland, S.J., Thompson, R.C., 2015. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine Pollution Bulletin 99, 178–185.

Napper, I.E., Thompson, R.C., 2016. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Marine Pollution Bulletin 112, 39–45.

Nizzetto, L., Futter, M., Langaas, S., 2016. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environmental Science and Technology 50, 10777–10779.

Novotny, T.E., Lum, K., Smith, E., Wang, V., Barnes, R., 2009. Cigarettes butts and the case for an environmental policy on hazardous cigarette waste. International Journal of Environmental Research and Public Health 6, 1691–1705.

Peters, C.A., Bratton, S.P., 2016. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environmental Pollution 210, 380–387.

Piñon-Colin, T. de J., Rodriguez-Jimenez, R., Rogel-Hernandez, E., Alvarez-Andrade, A., Wakida, F.T., 2020. Microplastics in stormwater runoff in a semiarid region, Tijuana, Mexico. Science of the Total Environment 704, 135411.

PlasticsEurope, 2019. Plastics – the Facts 2019: An analysis of European plastics production, demand and waste data. Report, 1–42.

Rochman, C.M., Browne, M.A., Halpern, B.S., Hentschel, B.T., Hoh, E., Karapanagioti, H.K., Rios-Mendoza, L.M., Takada, H., Teh, S., Thompson, R.C., 2013. Policy: Classify plastic waste as hazardous. Nature 494, 169–170.

Rodrigues, M.O., Abrantes, N., Gonçalves, F.J.M., Nogueira, H., Marques, J.C., Gonçalves, A.M.M., 2018. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Science of the Total Environment 633, 1549–1559.

Sruthy, S., Ramasamy, E. V., 2017. Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India. Environmental Pollution 222, 315–322.

Tanaka, K., Takada, H., Yamashita, R., Mizukawa, K., Fukuwaka, M. aki, Watanuki, Y., 2013. Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Marine Pollution Bulletin 69, 219–222.

Turner, S., Horton, A.A., Rose, N.L., Hall, C., 2019. A temporal sediment record of microplastics in an urban lake, London, UK. Journal of Paleolimnology 61, 449–462.

van Wezel, A., Caris, I., Kools, S.A.E., 2016. Release of primary microplastics from consumer products to wastewater in the Netherlands. Environmental Toxicology and Chemistry 35, 1627–1631.

Vaughan, R., Turner, S.D., Rose, N.L., 2017. Microplastics in the sediments of a UK urban lake. Environmental Pollution 229, 10–18.

Wang, J., Peng, J., Tan, Z., Gao, Y., Zhan, Z., Chen, Q., Cai, L., 2017a. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171, 248–258.

Wang, J., Tan, Z., Peng, J., Qiu, Q., Li, M., 2016. The behaviors of microplastics in the marine environment. Marine Environmental Research 113, 7–17.

Wang, W., Ndungu, A.W., Li, Z., Wang, J., 2017b. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Science of the Total Environment 575, 1369–1374.

Xiong, X., Zhang, K., Chen, X., Shi, H., Luo, Z., Wu, C., 2018. Sources and distribution of microplastics in China’s largest inland lake – Qinghai Lake. Environmental Pollution 235, 899–906.

Yonkos, L.T., Friedel, E.A., Perez-Reyes, A.C., Ghosal, S., Arthur, C.D., 2014. Microplastics in four estuarine rivers in the chesapeake bay, U.S.A. Environmental Science and Technology 48, 14195–14202.

Yu, X., Peng, J., Wang, J., Wang, K., Bao, S., 2016. Occurrence of microplastics in the beach sand of the Chinese inner sea: The Bohai Sea. Environmental Pollution 214, 722–730.

Yuan, W., Liu, X., Wang, W., Di, M., Wang, J., 2019. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicology and Environmental Safety 170, 180–187.

Yurtsever, M., 2019. Tiny, shiny, and colorful microplastics: Are regular glitters a significant source of microplastics? Marine Pollution Bulletin 146, 678–682.

Zbyszewski, M., Corcoran, P.L., Hockin, A., 2014. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. Journal of Great Lakes Research 40, 288–299.

Zhang, K., Su, J., Xiong, X., Wu, X., Wu, C., Liu, J., 2016. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environmental Pollution 219, 450–455.

Zhang, K., Xiong, X., Hu, H., Wu, C., Bi, Y., Wu, Y., Zhou, B., Lam, P.K.S., Liu, J., 2017. Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environmental Science and Technology 51, 3794–3801.

Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., Tu, C., Luo, Y., 2018. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma 322, 201–208.

Zobkov, M., Esiukova, E., 2017. Microplastics in Baltic bottom sediments: Quantification procedures and first results. Marine Pollution Bulletin 114, 724–732.
Go to article

Authors and Affiliations

Weronika Rogowska
1
Elżbieta Skorbiłowicz
1
Mirosław Skorbiłowicz
1
Łukasz Trybułowski
1

  1. Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Technology in Environmental Engineering, Wiejska 45E, 15-351 Białystok, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the studies on a degree of pollution and sanitary-bacteriological stale of bottom sediments of Wigry Lake in I 998 and 1999. Total Viable Count at 20°C (TYC 20°C) and Total Viable Count at 37°C (TYC 37°C) were used as indicators of pollution, while Total Coli (TC), Faecal Coli (FC), Faecal Streptococcus - Enterococcus (FS) and Clostridium perfringens - as indicators of the sanitary stale. Bottom sediment samples wen: collected from 3 sites situated in the centre of the lake and from 6 sites in the vicinity of the lake shore. Sanely and gravel offshore bottom sediments showed less degree or pollution than muddy bottom sediments collected from the centre or the lake. Higher numbers of anaerobic spore-forming and sulphite reducing bacteria (Clostridium pcrfringens) found at sites 1 and 2 in the vicinity of the mouth of Czarna Hańcza River lo Lake Wigry. At those places a higher bacteriological pol lution of bottom sediments samples was found.
Go to article

Authors and Affiliations

Ewa Korzeniewska
Anna Gotkowska-Plachta
Download PDF Download RIS Download Bibtex

Abstract

The article presents changes in the thickness and duration of the ice cover found in the restored anthropogenic water reservoir of Pławniowice. It also defines the role the ice cover plays in the formation of the reservoir limnological cycle. Characteristic and significant changeability of the ice cover thickness and duration was observed. The changes in the ice cover demonstrate that they are cyclical but not regular. The ice cover did not always form in the analyzed period. It happened twice, i.e. in 1988 and 2007 (a gap of 20 years). The longest lake freezing period lasted 119 days. Changes in the ice cover duration also show certain periodicity. The shortest periods occurred approx. every 7 years. Maximum values of the ice cover thickness ranged between 10 and 52 cm. There is a relation between the ice cover thickness and its duration period. The rate of increase in the ice cover thickness varied between 0.296 and 3.6 cm/d. The hypolimnion removal impact on the ice cover duration period and thickness was not observed. On the other hand, the ice cover duration period affects the spring circulation duration. Thus, it has an influence on the oxygen balance of the limnic ecosystem.

Go to article

Authors and Affiliations

Maciej Kostecki
Download PDF Download RIS Download Bibtex

Abstract

The restoration of the anthropogenic Pławniowice water reservoir with the hypolimnion withdrawal method (the Olszewski's tube) began in December 2003. The decision to restore the reservoir had been taken due to its terrible condition resulting from the hypertrophy, which had been indicated by the research from the years 1993–1998.

The following paper presents the results of eight-year-long research into the formation of oxygen conditions and restoration settings. They were compared with the data obtained from the research before the restoration. Positive changes were witnessed. It was showed that grasping the changes in oxygen conditions enables the comparison of oxygen profiles in the same months in subsequent years. The ratio of anoxic water layer thickness to the oxygenated layer thickness was suggested as a factor characterizing oxygen conditions. The area described with an izooxa in the xy coordinate system was suggested as a factor [O2 mg/m2] allowing researchers to understand and describe occurring changes. It was observed that the oxygen solved in water as a result of the restoration occurred in the whole water column in the third decade of July. The oxygen concentration in the hypolimnion gradually rose in May, June and July each year. It was showed that the improvement in oxygen conditions stemmed from progressing oligotrophy of the reservoir.

Go to article

Authors and Affiliations

Maciej Kostecki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of studies of sanitary microorganisms' vertical distribution in pelagial and profundal waters of Lake Wigry against the background of thermal-oxygen relations and the presence of a chosen chemical compound in the annual cycle. Total Viable Count at 20°C (TYC 20°C) and Total Viable Count at 37°C (TYC 37°C) were used as indicators of pollution, while Total Coli (TC), Faecal Coli (FC) and Faecal Streptococcus-Enterococcus (FS) - as indicators of the sanitary state. Water samples were collected from 3 sites situated in the centre of the lake. Pelagial and profundal waters showed a little degree of pollution. Higher bacteriological pollution was found in some of waters samples from Lake Wigry at site I in the vicinity of the mouth of the Czarna Hańcza River. The most numerous sanitary microorganisms were detected at the deep from I to 5 meters and above the bottom sediments. Number of FC bacteria was only higher at the depth of 5 meters and deeper. An important positive correlation was noted between temperature and TYC 20°C as well as TYC 37°C, while negative between TC also FC during the whole study period. The oxygen content was correlated negative with TYC 20°C, TYC 37°C and FS. The depth was correlated negatively with TYC 20°C only.
Go to article

Authors and Affiliations

Ewa Korzeniewska
Anna Gotkowska-Płachta
Download PDF Download RIS Download Bibtex

Abstract

The last study on n-alkanes in surface sediments of Taihu Lake was in 2000, only 13 surface sediment samples were analysed, in order to have a comprehensive and up-to-date understanding of n-alkanes in the surface sediments of Taihu Lake, 41 surface sediment samples were analyzed by GC-MS. C10 to C37 were detected, the total concentrations of n-alkanes ranged from 2109 ng g−1 to 9096 ng g−1 (dry weight). There was strong odd carbon predominance in long chain n-alkanes and even carbon predominance in short chain n-alkanes. When this finding was combined with the analysis results of wax n-alkanes (WaxCn), carbon preference index (CPI), unresolved complex mixture (UCM), hopanes and steranes, it was considered that the long chain n-alkanes were mainly from terrigenous higher plants, and that the short chain n-alkanes mainly originated from bacteria and algae in the lake, compared with previous studies, there were no obvious anthropogenic petrogenic inputs. Terrestrial and aquatic hydrocarbons ratio (TAR) and C21−/C25+ indicated that terrigenous input was higher than aquatic sources and the nearshore n-alkanes were mainly from land-derived sources. Moreover, the distribution of short chain n-alkanes presented a relatively uniform pattern, while the long chain n-alkanes presented a trend that concentrations dropped from nearshore places to the middle of lake.

Go to article

Authors and Affiliations

Yunlong Yu
Yuanyuan Li
Zhigang Guo
Hua Zou
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of studies on detection, occurrence and differentiation of the waterborne bacterial potential pathogens from Staphylococcus genus in the water of Wigry Lake watering places in north-eastern Poland. The samples of water were collected from June 1995 to September 1999 at one-month intervals, during bathing season. Eight sampling stations were selected in the most attended watering places of the lake, situated near landing stages, camping sites and holiday resorts were investigated. The watering places in the northern part of Lake Wigry (called Ploso Northern) showed the highest number of waterborne bacterial pathogens from Staphylococcus genus. The most numerous were species: Staphylocorcus capitis, Staphylococcus cohnii, Staphylococcus len/us and Staphylococcus xylosus. Pathogens from Staphylococcus aureus species identified in I 0% of water samples in the absence of faecal bacteria from Escherichia coli species (in 100 crn' of water). The Czarna Hańcza River, which brought a lot of purified sewage from Wastewater Treatment Plant in Suwałki to northern part of Wigry Lake has immense influence on the pollution of this part Wigry Lake.
Go to article

Authors and Affiliations

Ewa Korzeniewska
Download PDF Download RIS Download Bibtex

Abstract

Lakes can be restored by the aeration method with the use of wind driven pulverising aerators. The method allows for moderate oxygenation of hypolimnion waters and it may be part of an integrated surface waters restoration system. The paper attempts to use the author’s method of maximum wind speeds to assess the volumetric flow of water through the aerator pulverisation mechanism. The study was conducted in 2018 in windy conditions of Lake Swarzędzkie. The introduction to the paper includes the characteristic of the lake and discusses the construction and operation of the wind driven pulverising aerator. Based on the maximum wind speed model, the theoretical capacity of the machine was calculated, which in the conditions of Lake Swarzędzkie was less than 111,500 m3 per year. Based on maximum wind speeds, the method of assessing the efficiency of the wind driven pulverising aerator is suitable for determining the volumetric flow rate of the pulverisation unit. This can significantly facilitate the planning of water reservoir restoration.
Go to article

Authors and Affiliations

Andrzej Osuch
1
ORCID: ORCID
Ewa Osuch
1
ORCID: ORCID
Piotr Rybacki
2
ORCID: ORCID
Marcin Herkowiak
3
ORCID: ORCID
Emilia Osuch
4

  1. Poznań University of Life Sciences, Department of Biosystems Engineering, 50 Wojska Polskiego St., 60-637 Poznań, Poland
  2. Poznań University of Life Sciences, Department of Agronomy, Poznań, Poland
  3. Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
  4. Vocational School Complex No 6, names Joachim Lelewel in Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study we compared chydorid cladoceran (Chydoridae) taxa and assemblages from sediments of 6 Polish and 6 Finnish lakes and investigated if the difference in climate of these two countries can be detected in the cladoceran data. The data were analysed in terms of I) average relative proportions of chydorid taxa during the history of each lake and by 2) redundancy analysis (RDA) to explain the present effect of environmental variables (altitude, area, maximum depth, mean annual temperature, mean summer temperature and length of the growing season) on species abundances. The redundancy analysis (RDA) enabled us to distinguish groups of taxa I) with a high thermal preference 2) associated with small, cold-water lakes and 3) associated with shallow lakes. There are clear differences in the dominant chydorid taxa and in the relative proportions of many other chydorid taxa between the two countries since the end of the last glaciation. Although these differences first of all appear to reflect the climatic difference, the influence of many other environmental factors, controlling the living conditions of particular chydorids have been raised and considered. Further studies with larger data are needed before the role of climate can be reliably separated from other elements of environment.
Go to article

Authors and Affiliations

Kaarina Sarmaja-Korjonen
Krystyna Szeroczyńska
Michał Gąsiorowski
Download PDF Download RIS Download Bibtex

Abstract

Plastic is present everywhere. What happens to it and what impact does it have on the world around us?
Go to article

Authors and Affiliations

Wojciech Pol
1
Karolina Mierzyńska
1

  1. Faculty of Biology, University of Białystok
Download PDF Download RIS Download Bibtex

Abstract

The oxygen and chlorophyll a contents. pH, temperature and transparency were studied in Lake Rzuno in the period from June 1998 - September I 999. This lake has a very strong thermal stratification and weaker oxygenic stratification. The degree of surface water saturation with oxygen was rather small (max. 136%) but the oxygen conditions in the whole Lake Rzuno were good because the total lack of oxygen is noted only in summer and only below 20 m depth. Whereas during autumn and spring circulation the oxygen concentration reaches 5 mg O, drn' al the bottom. The correlation between visibility of Secchi disc and chlorophyll a concentration featured high correlation indicator (r = -0.87). The awerage water transparency, low oxygen deficit and small changes in water reaction show that this lake has moderate eutrophic character.
Go to article

Authors and Affiliations

Jan Trojanowski
Janusz Bruski
Download PDF Download RIS Download Bibtex

Abstract

The Hoglandvatnet and Ålandvatnet are genetically associated with the action of a large ice stream issuing from Mittag-Lefflerbreen towards Lomonosovfonna as far nortwards as Austfjorden. The accomplished investigations permit water properties to be described for Hoglandvatnet and Ålandvatnet, as well as the chemical composition of the basin waters to be correlated with lithologic diversity of the surrounding massifs and the composition of glacier water feeding them. Water of Hoglandvatnet has a rather uniform ion composition. It is sulphate-calcium water. Low mineral contents of glacier water and that flowing through crystalline rocks of Framstaken and feeding the basin result in its less marked effect on the Hoglandvatnet water, compared with highly mineralized water of streams issuing from Trikolorfjellet and Tarantellen. Water of Ålandvatnet has a somewhat different quantitative ion composition than that of Hoglandvatnet. It is calcium-sulphate-bicarbonate water which is richer in the bicarbonate ion than the Hoglandvatnet waters. This is most likely due to the influence of bicarbonate water of Ålandelva and glacier water feeding the basin. It can also be the result of a smaller contribution from highly mineralized calcium-sulphate water issuing from Trikolorfjellet.

Go to article

Authors and Affiliations

Anna Stankowska
Download PDF Download RIS Download Bibtex

Abstract

The study included mesotrophic Lake Piaseczno, located in the Łęczna-Włodawa Lake District. The aim of the study was to evaluate changes of water vegetation of a mesotrophic lake subjected to strong recreational pressure. Specifically we sought to better understand which natu-ral landscapes and anthropogenic developments stimulate or impede macrophyte development and spread. The study was conducted in July in 1997, 2007 and 2017 in three transects: the peat-bog (northern part of the lake), the recreational area (southeast part) and the agricultural area (east). The phytolittoral zone was analyzed from the shoreline to the maximum range of macrophytes occurrence. The study included all groups of macrophytes. Macrophytes in the mesotrophic Lake Piaseczno are still subjected to successive changes. Clearly increased diversity among emergent macrophytes, while a group of submerged macrophytes decreased. The largest changes among analyzed groups of macrophytes occurred in recreational and agricultural transects. Macrophytes have increased the range of occurrence, which may be due to hydrological changes associated with raising the overall water level, thus with increasing the area of the littoral. Impoverishment of diversity among elodeids shows the processes associated with the increase in Lake trophy.
Go to article

Authors and Affiliations

Andrzej Demetraki-Paleolog
Joanna Sender
Marcin Kolejko
Michał Klimczak
Anna Kaczorowska
Download PDF Download RIS Download Bibtex

Abstract

Gala Lake National Park that has an international importance is one of the most important wetland ecosystems for Turkey. As same as many aquatic habitats, Gala Lake is under a significant anthropogenic pressure originated from agricultural activities conducted around the lake and from industrial discharges by means of Ergene River.

The aim of this study was to evaluate the sediment quality of Gala Lake and Irrigation Canal by investigating some toxic element accumulations (As, B, Ni, Cr, Pb, Cd, Zn and Cu) from a statistical perspective. Pearson Correlation Index (PCI) and Factor Analysis (FA) were applied to detected data in order to determine the associated contaminants and effective factors on the system. Potential Ecological Risk Index (RI) and Biological Risk Index based sediment quality guidelines (mERM-Q) applied to detected data in order to assess the ecological and biological risks of heavy metals in the ecosystem. Also Geographic Information System (GIS) technology was used to make visual explanations by presenting distribution maps of investigated elements.

According to the results of PCI, significant positive correlations were recorded among the investigated toxic elements at 0.01 significance level. According to the results of FA, two factors, which were named as “Agricultural Factor” and “Industrial Factor”, explained 86.6% of the total variance. According to the results of Potential Ecological Risk Index, cadmium was found to be the highest risk factor and according to results of Biological Risk Index, nickel and chromium were found to be the highest risk factors for Gala Lake and Irrigation Canal. As a result of the present study, it was also determined that heavy metal contents in sediments of Gala Lake National Park reached to critical levels and the system is intensively under effect of agricultural and industrial originated pollution.

Go to article

Authors and Affiliations

Cem Tokatli

This page uses 'cookies'. Learn more