Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The usefulness of untreated powdered eggshell as low-cost adsorbent for the removal of pentachlorophenol (PCP) from aqueous solutions was investigated. The most important parameters affecting the adsorption process, including the pH and ionic strength, were examined. The adsorption characteristics of PCP onto eggshell were evaluated in terms of kinetic and equilibrium parameters. The kinetic data were studied in terms of the pseudo-first order, pseudo-second order and intra-particle diffusion kinetic models. The equilibrium data were analyzed using the Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. The pseudo-second order model best described the adsorption kinetics. Using the Langmuir equation, the monolayer adsorption capacity of eggshell for PCP was found to be 0.127 mg/g. The results showed that PCP can be effectively removed from aqueous solution employing eggshell as a cheap adsorbent.

Go to article

Authors and Affiliations

Joanna Sadkowska
Jolanta Kumirska
Magda Caban
Mariusz Chmielewski
Piotr Stepnowski
Download PDF Download RIS Download Bibtex

Abstract

Satellite-based positioning, which started being developed in the mid-1960s for military purposes, is now used in almost every area. For the studies single and/or double frequency receivers are used. The cost of a receiver and antenna couple that have capable of high coordinate accuracies ranges from $3000 to $15000. With the production of Original Equipment Manufacturer (OEM) receivers, the cost of satellite-based location determination decreases to approximately one in 10 for the civilian user compared to the operations performed with geodetic receivers and antennas. However, although these receivers collect data in multi-Global Navigation Satellite System (GNSS) and frequencies, the accuracy of the coordinate values estimated is not as high as geodetic receivers and antennas. Therefore, it is necessary to carry out an accuracy study to obtain information about which studies can be used in. In this study, measurements were made at the UZEL point located on the roof of the Yıldız Technical University Geomatics Engineering Department by using the ZED-F9P-02B OEM multi GNSS receiver and ANN-MB L1/L2 multi-band GNSS patch antenna. The performance of the test results has been examined by comparing the results from CSRS(Canadian Spatial Reference System)-PPP with the coordinates of the UZEL point. As a result of the comparison, the difference between the coordinate determined with collected 3.5 hr data and the coordinates of the UZEL point has been determined as – 1.4 cm, 2.8 cm, and 9.3 cm in the East, North, and Height directions, respectively
Go to article

Authors and Affiliations

Mustafa Fahri Karabulut
1
ORCID: ORCID
Nedim Onur Aykut
1
ORCID: ORCID
Burak Akpınar
1
ORCID: ORCID
Güldane Oku Topal
1
ORCID: ORCID
Zübeyir Bilal Çakmak
1
ORCID: ORCID
Bilge Doran
1
ORCID: ORCID
Ahmet Anıl Dindar
2
ORCID: ORCID
Cemal Özer Yiğit
2
ORCID: ORCID
Mert Bezcioğlu
2
ORCID: ORCID
Anıl Zafer
2
ORCID: ORCID

  1. Yildiz Technical University, Istanbul, Turkey
  2. Gebze Technical University, Gebze, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Nowaday, many manufacturing companies are integrating Industry 4.0 technology into their operational processes, particularly those aiming to enhance production operations. However, business decision-makers must remain vigilant about potential risks associated with adopting this technology. These risks include initial financial investments for testing and system installation, managing human resources to operate the new system, and concerns regarding data security. This study proposes designing an Industry 4.0 technology system to augment machining machine operations, leveraging Internet of Things (IoT) devices to facilitate connectivity and data transmission. Additionally, it aims to improve production process monitoring through visual management techniques. The machines under study are semi-automatic and lack operational digitization or expansion capacity. Through research on integrating low-cost Industry 4.0 technology into the production process, this study has achieved an annual reduction in production costs by $9593. Moreover, the defect rate for product length dimensions has plummeted from 54.90% per month to zero defects. The study employs the DMAIC method (Define-Measure-Analysis-Improve-Control) cycle within the Six Sigma methodology to investigate and apply low-cost Industry 4.0 technology to production process enhancement. This combined approach can be customized and applied to various business process improvement models, further enhancing the operation of machining machines originally equipped with Industry 3.0 technology.
Go to article

Authors and Affiliations

Do Ngoc Hien
Minh Ly DUC
Tran Duc Tuan
Download PDF Download RIS Download Bibtex

Abstract

In the present study, basic red 9 had been removed from synthetic waste water using animal waste. Cow dung ash had been prepared and characterized by scanning electron microscope. Morphology analysis shows very fine particles of less than 1 μm. The pH analysis study favours a pH of 8.5 for maximum dye removal. The removal of basic red 9 was very fast on cow dung ash. Percentage dye removal was 80.24% and 95.24 in 5 minutes and 90 minutes, respectively at initial dye concentration of 10 ppm.
Go to article

Authors and Affiliations

Raj Kumar Arya
1
Ghanshyam Meena
2 3
Devyani Thapliyal
1
Sanghamitra Barman
4
Gopinath Halder
5
Pooja Shandilya
6

  1. Dr. B.R. Ambedkar National Institute of Technology, Department of Chemical Engineering, Jalandhar,144011, Punjab, India
  2. Jaypee University of Engineering and Technology, Guna, 473226, Madhya Pradesh, India
  3. National Fertilizers Ltd., Bathinda, Punjab-151003, India
  4. Thapar Institute of Engineering and Technology, Department of Chemical Engineering, Patiala, 147004, Punjab, India
  5. National Institute of Technology Durgapur, Department of Chemical Engineering, M. G. Avenue, Durgapur-713209, West Bengal, India
  6. Shoolini University, School of Advanced Chemical Sciences, Solan HP, 173229, India
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of structural monitoring with the use of angular displacement measurements performed with inclinometer devices. Inclinometer method is a solution free from the basic disadvantages of optical methods used commonly in structural monitoring, such as sensitivity to any type of visibility restrictions, pollution or influence of weather conditions. At the same time, with appropriate sensor parameters, a much better measurement accuracy is obtained than for typical optical methods and very low energy demand and moderate costs are achieved. Taking into account the above-mentioned issues, in the first stage an appropriate MEMS-type inclinometer sensor was selected, its laboratory tests were carried out and a method of the offset temperature drift correction, individual for each sensor, was developed.

Go to article

Authors and Affiliations

S. Wierzbicki
Z. Pióro
M. Osiniak
E. Antoszkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of structural monitoring with the use of angular and linear displacement measurements performed using inclinometer and laser measuring devices. The focus is mainly on the inclinometer measurement method, which is a solution free from the basic disadvantages of optical methods, such as sensitivity to any type of visibility restrictions, pollution or influence of weather conditions. Testing of this method was carried out in practical application in an wireless monitoring system, installed in a large-area industrial building. The measurement results performed using the inclinometers were compared with simultaneous measurements of linear displacements performed with the use of proven methods based on laser rangefinders. The research and analysis show that the method of measuring angular displacements using the inclinometers with MEMS sensors of appropriate quality is a very good, better than typical optical methods, solution of structural monitoring systems that allows to obtain accurate and reliable results.

Go to article

Authors and Affiliations

Stanisław Wierzbicki
ORCID: ORCID
Zbigniew Pióro
Marcin Osiniak
Edward Antoszkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Low-cost sensor arrays are an economical and efficient solution for large-scale networked monitoring of atmospheric pollutants. These sensors need to be calibrated in situ before use, and existing data-driven calibration models have been widely used, but require large amounts of co-location data with reference stations for training, while performing poorly across domains. To address this problem, a meta-learningbased calibration network for air sensors is proposed, which has been tested on ozone datasets. The tests have proved that it outperforms five other conventional methods in important metrics such as mean absolute error, root mean square error and correlation coefficient. Taking Manlleu and Tona as the source domain and Vic as the target domain, the proposed method reduces MAE and RMSE by 17.06% and 6.71% on average, and improves R2 by an average of 4.21%, compared with the suboptimal pre-trained multi-source transfer calibration. The method can provide a new idea and direction to solve the problem of cross-domain and reliance on a large amount of co-location data in the calibration of sensors.
Go to article

Authors and Affiliations

Feng Tianliang
1
Xiong Xingchuang
2
Jin Shangzhong
1

  1. College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
  2. National Institute of Metrology, Beijing 100029, China
Download PDF Download RIS Download Bibtex

Abstract

This paper introduces a new comprehensive procedure for both geometric and colour calibration of structured light system. In order to perform both geometric and colour calibration procedure, a new calibration artifact is proposed. The intrinsic and extrinsic parameters of projector and camera are estimated by using an extended pinhole camera model with a tangential and radial distortion. Camera image plane coordinates are obtained by extracting features from images of a calibration artifact. Projector image plane coordinates are calculated on the basis of continuous phase maps obtained from a fringe pattern phase reconstruction procedure. In order to stereo calibrate camera-projector system, pairs of corresponding image plane points are calculated with subpixel accuracy. In addition, one of three pattern views is used in colour calibration. RGB values of a colour field pattern detected by camera and their reference values are compared. This comparison leads to derivation of a colour transformation matrix. The performance of the proposed method is tested by measuring plane, sphere and distance reference. Also 360 degrees complex object 3D model from a set of measurements is obtained. Residual mean errors for all tests performed are calculated.

Go to article

Authors and Affiliations

K. Szelag
G. Maczkowski
R. Gierwialo
A. Gebarska
R. Sitnik

This page uses 'cookies'. Learn more