Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The cyclic modular approach is proposed for mechatronic object design. The approach is based on a new conceptual model of the object and a new algorithm of its design. The model consists of invariant and changeable parts. The parts have a hierarchical structure. The proposed algorithm allows for creating the object from the basis principle to the construction step by step. It makes it possible to design an adequate object in all forms of its representations: structure, schematic diagram, mathematical model and construction. Each of these forms has an invariant part, i.e. the structure of the functioning process of the object. Application of the proposed approach reduces the time needed for the object design.

Go to article

Authors and Affiliations

Oleksandr Uzunov
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a solution of the control system for fatigue test stand MZGS-100 PL, comprising the integrated Real-Time controller based on FPGA (Field-Programmable Gate Array) technology with LabVIEW software. The described control system performs functions such as continuous regulation of speed induction motor, measuring strain of the lever machine and the test specimen, displacement of the polyharmonic vibrator, as well as the elimination of interferences, overload protection and emergency stop of the machine. The fatigue test stand also allows to set the pseudo-random history of energy parameter W(t).

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Wojciech Macek
Ewald Macha

Download PDF Download RIS Download Bibtex

Abstract

The drive train of a small scale magnetically levitated train reveals the principles of a mechatronic system and offers challenges related to design, construction and control. Therefore, it is used at the Institute of electrical Machines (IEM) of the RWTH Aachen University as a demonstrator for engineering solutions. Instead of being a part of a static predefined student laboratory, the small scale magnetically levitated train is part of dynamic individual student projects. This approach provides the advantage that the students are directly involved in the engineering process and gain motivation out of their personal ideas becoming reality.
Go to article

Authors and Affiliations

Gregor Glehn
Rüdiger Appunn
Kay Hameyer
Download PDF Download RIS Download Bibtex

Abstract

Controlling mechanical systems with position and velocity cascade loops is one of the most effective methods to operate this type of systems. However, when using low-rate sampling electronics, the implementation is not trivial and the resulting performance can be poor. This paper proposes effective tuning rules that only require establishing the bandwidth of the inner velocity loop and an estimation of the inertia of the mechanism. Since discrete-time mechatronic systems can also exhibit unstable behavior, several stability conditions are also derived. By using the proposed methodology, a P-PI control algorithm is developed for a desktop haptic device, obtaining good experimental performance with low sampling-rate electronics.

Go to article

Authors and Affiliations

Jorge Juan Gil
Iñaki Díaz
Download PDF Download RIS Download Bibtex

Abstract

In this paper, model reference output feedback tracking control of an aircraft subject to additive, uncertain, nonlinear disturbances is considered. In order to present the design steps in a clear fashion: first, the aircraft dynamics is temporarily assumed as known with all the states of the system available. Then a feedback linearizing controller minimizing a performance index while only requiring the output measurements of the system is proposed. As the aircraft dynamics is uncertain and only the output is available, the proposed controller makes use of a novel uncertainty estimator. The stability of the closed loop system and global asymptotic tracking of the proposed method are ensured via Lyapunov based arguments, asymptotic convergence of the controller to an optimal controller is also established. Numerical simulations are presented in order to demonstrate the feasibility and performance of the proposed control strategy.
Go to article

Bibliography

[1] S.N. Balakrishnan and V. Biega: Adaptive-critic-based neural networks for aircraft optimal control. J. of Guidance, Control, and Dynamics, 19(4), (1996), 893–898, DOI : 10.2514/3.21715.
[2] B. Bidikli, E. Tatlicioglu, E. Zergeroglu, and A. Bayrak: An asymptotically stable robust controller formulation for a class of MIMO nonlinear systems with uncertain dynamics. Int. J. of Systems Science, 47(12), (2016), 2913–2924, DOI: 10.1080/00207721.2015.1039627.
[3] B. Bidikli, E. Tatlicioglu, A. Bayrak, and E. Zergeroglu: A new robust integral of sign of error feedback controller with adaptive compensation gain. In IEEE Int. Conf. on Decision and Control, (2013), 3782–3787, DOI: 10.1109/CDC.2013.6760466.
[4] B. Bidikli, E. Tatlicioglu, and E. Zergeroglu: A self tuning RISE controller formulation. In American Control Conf., (2014), 5608–5613, DOI: 10.1109/ACC.2014.6859217.
[5] M. Bouchoucha, M. Tadjine, A. Tayebi, P. Mullhaupt, and S. Bouab- dallah: Robust nonlinear pi for attitude stabilization of a four-rotor miniaircraft: From theory to experiment. Archives of Control Sciences, 18(1), (2008), 99–120.
[6] A.E. Bryson and Yu-Chi Ho: Applied Optimal Control: Optimization, Estimation, and Control. Hemisphere, Washington, DC, WA, USA, 1975.
[7] Agus Budiyono and Singgih S. Wibowo: Optimal tracking controller design for a small scale helicopter. J. of Bionic Engineering, 4 (2007), 271–280, DOI: 10.1016/S1672-6529(07)60041-9.
[8] Y.N. Chelnokov, I.A. Pankratov, and Y.G. Sapunkov: Optimal reorientation of spacecraft orbit. Archives of Control Sciences, 24(2), (2014), 119–128, DOI: 10.2478/acsc-2014-0008.
[9] W.-H. Chen, D.J. Ballance, P.J. Gawthrop, and J. O’Reilly: A nonlinear disturbance observer for robotic manipulators. IEEE Tr. on Industrial Electronics, 47(4), (2000), 932–938, DOI: 10.1109/41.857974.
[10] R. Czyba and L. Stajer: Dynamic contraction method approach to digital longitudinal aircraft flight controller design. Archives of Control Sciences, 29(1), (2019), 97–109, DOI: 10.24425/acs.2019.127525.
[11] Z.T. Dydek, A.M. Annaswamy, and E. Lavretsky: Adaptive control and the NASA X-15-3 flight revisited. IEEE Control Systems, 30(3), (2010), 32–48, DOI: 10.1109/MCS.2010.936292.
[12] E.N. Johnson and A.J. Calise: Pseudo-control hedging: a new method for adaptive control. In Workshop on advances in navigation guidance and control technology, pages 1–23, (2000).
[13] H.K. Khalil and J.W. Grizzle: Nonlinear systems. Prentice Hall, New York, NY, USA, 2002.
[14] D.E. Kirk: Optimal Control Theory: An Introduction. Dover, 2012.
[15] L.-V. Lai, C.-C. Yang, and C.-J. Wu: Time-optimal control of a hovering quadrotor helicopter. J. of Intelligent and Robotic Systems, 45 (2006), 115– 135, DOI: 10.1007/s10846-005-9015-3.
[16] J. Leitner, A. Calise, and JV.R. Prasad: Analysis of adaptive neural networks for helicopter flight control. J. of Guidance, Control, and Dynamics, 20(5), (1997), 972–979, DOI: 10.2514/2.4142.
[17] F.L. Lewis, D. Vrabie, and V.L. Syrmos: Optimal Control. John Wiley & Sons, 2012.
[18] W. MacKunis: Nonlinear Control for Systems Containing Input Uncertainty via a Lyapunov-based Approach. PhD thesis, University of Florida, Gainesville, FL, USA, 2009.
[19] W. MacKunis, P.M. Patre, M.K. Kaiser, and W.E. Dixon: Asymptotic tracking for aircraft via robust and adaptive dynamic inversion methods. IEEE Tr. on Control Systems Technology, 18(6), (2010), 1448–1456, DOI: 10.1109/TCST.2009.2039572.
[20] S. Mishra, T. Rakstad, andW. Zhang: Robust attitude control for quadrotors based on parameter optimization of a nonlinear disturbance observer. J. of Dynamic Systems, Measurement and Control, 141(8), (2019), 081003, DOI: 10.1115/1.4042741.
[21] R.M. Murray: Recent research in cooperative control of multivehicle systems. J. of Dynamic Systems, Measurement and Control, 129 (2007), 571– 583, DOI: 10.1115/1.2766721.
[22] D. Nodland, H. Zargarzadeh, and S. Jagannathan: Neural networkbased optimal adaptive output feedback control of a helicopter UAV. IEEE Trans. on Neural Networks and Learning Systems, 24(7), (2013), 1061– 1073, DOI: 10.1109/TNNLS.2013.2251747.
[23] A. Phillips and F. Sahin: Optimal control of a twin rotor MIMO system using LQR with integral action. In IEEE World Automation Cong., (2014), 114–119, DOI: 10.1109/WAC.2014.6935709.
[24] Federal Aviation Administration. Federal aviation regulations. part 25: Airworthiness standards: Transport category airplanes, 2002.
[25] R.R. Costa, L. Hsu, A.K. Imai, and P. Kokotovic: Lyapunov-based adaptive control ofMIMOsystems. Automatica, 39(7), (2003), 1251–1257, DOI: 10.1016/S0005-1098(03)00085-2.
[26] A.C. Satici, H. Poonawala, and M.W. Spong: Robust optimal control of quadrotor UAVs. IEEE Access, 1 (2013), 79–93, DOI: 10.1109/ACCESS. 2013.2260794.
[27] R.F. Stengel: Optimal Control and Estimation. Dover, 1994.
[28] V. Stepanyan and A. Kurdila: Asymptotic tracking of uncertain systems with continuous control using adaptive bounding. IEEE Trans. on Neural Networks, 20(8), (2009), 1320–1329, DOI: 10.1109/TNN.2009.2023214.
[29] B.L. Stevens and F.L. Lewis: Aircraft control and simulation. John Wiley & Sons, New York, NY, USA, 2003.
[30] I. Tanyer, E. Tatlicioglu, and E. Zergeroglu: A robust adaptive tracking controller for an aircraft with uncertain dynamical terms. In IFAC World Cong., (2014), 3202–3207, DOI: 10.3182/20140824-6-ZA-1003.01515.
[31] I. Tanyer, E. Tatlicioglu, and E. Zergeroglu: Neural network based robust control of an aircraft. Int. J. of Robotics& Automation, 35(1), (2020), DOI: 10.2316/J.2020.206-0074.
[32] I. Tanyer, E. Tatlicioglu, E. Zergeroglu, M. Deniz, A. Bayrak, and B. Ozdemirel: Robust output tracking control of an unmanned aerial vehicle subject to additive state-dependent disturbance. IET Control Theory & Applications, 10(14), (2016), 1612–1619, DOI: 10.1049/iet-cta.2015.1304.
[33] G. Tao: Adaptive control design and analysis. John Wiley & Sons, New York, NY, USA, 2003.
[34] Q. Wang and R.F. Stengel: Robust nonlinear flight control of a highperformance aircraft. IEEE Tr. on Control Systems Technology, 13(1), (2005), 15–26, DOI: 10.1109/TCST.2004.833651.
[35] H-N. Wu, M-M. Li, and L. Guo: Finite-horizon approximate optimal guaranteed cost control of uncertain nonlinear systems with application to Mars entry guidance. IEEE Trans. on Neural Networks and Learning Systems, 26(7), (2015), 1456–1467, DOI: 10.1109/TNNLS.2014.2346233.
[36] Q. Xie, B. Luo, F. Tan, and X. Guan: Optimal control for vertical take-off and landing aircraft non-linear system by online kernel-based dual heuristic programming learning. IET Control Theory & Applications, 9(6), (2015), 981–987, DOI: 10.1049/iet-cta.2013.0889.



Go to article

Authors and Affiliations

Ilker Tanyer
1
Enver Tatlicioglu
2
Erkan Zergeroglu
3

  1. Gezgini Inc., Folkart Towers, BBuilding, Floor: 36, Office: 3608, Izmir, 35580, Turkey
  2. Department of Electrical and Electronics Engineering, Ege University, Izmir, 35100, Turkey
  3. Department of Computer Engineering, Gebze Technical University, Kocaeli, 41400, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the designing and simulation of 400 Gbps polarisation division multiplexing-quadrature amplitude modulation-orthogonal frequency division multiplexing (PDM-4QAM-OFDM)-based inter-satellite optical wireless communication (IsOWC)/mechatronic telecommunication system for improving the link information carrying capacity was carried out. With quadrature amplitude modulation (QAM) encoding, the performance of the executed system has been addressed using metrics such as signal to noise ratio (SNR) and total received power (RP). The performance with suggested system has been examined in relation to the effects of various factors such as operating wavelength, transmission power, and receiving pointing error angle. Moreover, a better identification method for improving connection reach between mechatronic devices/satellites has been revealed in this study. A performance comparison of the proposed system with other implemented approaches has been made in the final step
Go to article

Authors and Affiliations

Shivmanmeet Singh
1 2
Narwant Singh Grewal
2
Baljeet Kaur
2

  1. I. K. Gujral Punjab Technical University, Jalandhar – Kapurthala Highway, Kapurthala, 144603, Punjab, India
  2. Department of Electronics and Communication Engineering, Guru Nanak Dev Engineering College, Ludhiana, 141006, Punjab, India

This page uses 'cookies'. Learn more