Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 25
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents results of monitoring carried out in barns with milking robots. The use of milking robots makes it possible, with proper stocking, to milk cows without human intervention. The analysis included all barns with Lely robots located in the Podlaskie Voivodeship in 2018–2021. In 2018–2019, there were seven such barns, and in 2020–2021 nine. In all barns, high milk yields were obtained of more than 1000 kg compared to the average milk yield obtained from stock of cows under monitoring in the Podlaskie Voivodeship. In 2021, four barns milked more than 9.5 thous. kg, three barns more than 10 thous. kg and two barns almost 12 thous. kg of milk. Fat and protein contents were typical for the breed. Three barns were monitored more closely in 2021, with varying numbers of robot milking stations in barns, i.e. A one, B two and C three milking stations. In 2021, over 700,000 kg was milked per stall in stall A, over 750,000 kg in B and over 850,000 kg of milk in C. The average milk per cow per milking was high, with over 11 kg in barn A, 12 kg in B and 13 kg in C.
Go to article

Authors and Affiliations

Andrzej Borusiewicz
1
ORCID: ORCID
Wacław Romaniuk
2
ORCID: ORCID
Stanisław Winnicki
2
ORCID: ORCID
Zbigniew Skibko
3
ORCID: ORCID
Janusz Zarajczyk
4
ORCID: ORCID

  1. International University of Applied Sciences in Lomza, 19 Studencka St, 18-402 Łomża, Poland
  2. Institute of Technology and Life Sciences – National Research Insitute, Falenty, Poland
  3. Bialystok University of Technology, Faculty of Electrical Engineering, Poland
  4. University of Life Sciences in Lublin, Faculty of Production Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate biomarkers of heat stress (HS) from an automatic milk- ing system (AMS), the relationships between measurements of the temperature-humidity index (THI), reticulorumen pH and temperature, and some automatic milking systems parameters in dairy cows (rumination time (RT), milk traits, body weight (BW) and consumption of concen- trate (CC)) during the summer period. Lithuanian Black and White dairy cows (n=365) were selected. The cows were milked with Lely Astronaut® A3 milking robots with free traffic. Biomarkers were collected from the Lely T4C management program for analysis. The pH and temperature of the contents of the cow reticulorumen were measured using specific Smax-tec boluses. The farm zone’s daily humidity and air temperature were obtained from the adjacent weather station (2 km away). According to this study, during HS, the higher THI positively cor- relates with milk lactose (ML), which increases the risk of mastitis and decreases CC, RT, BW, MY, reticulorumen pH, and F/P. Some biomarkers of HS can be milk yield, milk lactose, somatic cell count, concentrate intake, rumination time, body weight, reticulorumen pH, and milk fat – protein ratio. We can recommend monitoring these parameters in the herd management program to identify the possibility of heat stress.
Go to article

Authors and Affiliations

R. Antanaitis
1
M. Urbutis
1
V. Juozaitienė
2
D. Malašauskienė
1
M. Televičius
1

  1. Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės 18, Kaunas, Lithuania
  2. Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio 58, Kaunas, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

The aim of this research was to determine rumination time (RT) and the subsequent milk yield, along with trait changes during lactation dependent on the reproductive status of dairy cows. 728 cows were selected for evaluation in regards to 1–150 days of milk production (DIM). According to their period of lactation and reproductive status, the cows were selected for the following groups: Inseminated (1–35 days after insemination, n=182), Open (45–90 days after calving, n=126), Fresh (1–44 days after calving, n=45); Not-pregnant (>35–60 days after inse- mination and not-pregnant, n=55); Pregnant (35–60 days after insemination and pregnant (n=320). The animals were milked with Lely Astronaut® A3 milking robots. The daily milk yield, rumination time, bodyweight, milk composition (fat, protein, lactose, somatic cell count and gynecological status date) were collected from the Lely T4C management program for analysis. We estimated the lowest productivity in the pregnant cows, where the average milk yield was 28.72 kg and the highest productivity in the fresh cow (p<0.001) (Table 1). The longest rumina- tion time was determined for the inseminated cows, statistically significantly higher at 9.92% (p<0.001) than in the non-pregnant cows, whose rumination time was the shortest. The statisti- cally reliably RT positively correlated with productivity (r=0.384, p<0.001) of the cows (from r=0.302 in the second lactation and r=0.471 in the first lactation to r=0.561 in multiparous cows; p<0.001). Rumination time, according to groups of cows by milk yield, had a tendency to increase (2.14 times) from 202.0± 87.38 (in cows with a productivity of less than 10 kg milk) to 431.6±33.91 (in cows with a milk yield higher than 50 kg) by the linear regression equation: y = 38.02x + 232, R² = 0.721 (p<0.001). The relation between the gynecological status and milk fat-protein ratio of the cows was statistically significant (χ2=2.974, df= 8, p <0.0001). The longest rumination time was determined for the inseminated cows (1 – 35 days after insemination), and the shortest for the not-pregnant cows (>35 – 60 days after insemination and not-pregnant). We can conclude that rumination time, subsequent yield, and milk trait change depends on the period of lactation and reproductive status of a dairy cow.

Go to article

Authors and Affiliations

R. Antanaitis
V. Žilaitis
V. Juozaitienė
A. Noreika
A. Rutkauskas
Download PDF Download RIS Download Bibtex

Abstract

In Mexico, one of the principal natural resources is oil, however, the activity related to it has generated hydrocarbon spills on agricultural soils. The aim of this study was to evaluate the biodegradability of diesel by means of indigenous bacteria isolated from agricultural soil contaminated with 68 900 mg kg -1 diesel. We examined indigenous bacterial strains in agricultural soils contaminated with diesel from Acatzingo, Puebla, Mexico. We performed a physicochemical soil characterization, and a bacterial population quantification favoring sporulated bacteria of the genera Bacillus and Paenibacillus taken from the study site. Six bacterial strains were isolated. The identification was made based on the 16S rRNA gene and API systems. The tolerance and biodegradation capacity in diesel were determined at 4 000 to 24 000 mg L -1 of diesel. Residual concentrations of diesel were determined by GC-FID. Soil contaminated with diesel alters the concentrations of organic matter, phosphorus and nitrogen. Analysis of soil samples showed heat resistant bacterial populations of 106 cfu g -1 dry soil. Six strains from soil pollution were identified – Pseudomonas stutzeri M1CH1, Bacillus pumilus M1CH1b, Bacillus cereus M1CH10, Bacillus subtilis M1CH15a, and Paenibacillus lautus strains M1CH19 and M1CH27. These bacteria showed different degradation behavior. Bacillus pumilus M1HC1b and Paenibacillus lautus M1CH27 use diesel oil as the sole carbon source. Bacillus pumilus degraded high concentrations of diesel (24 000 mg L -1), while for Paenibacillus lautus it became toxic and the degradation was less.
Go to article

Authors and Affiliations

Amparo Mauricio-Gutiérrez
1
Rocío Machorro-Velázquez
2
Teresita Jiménez-Salgado
3
Candelario Vázquez-Crúz
3
María Patricia Sánchez-Alonso
3
Armando Tapia-Hernández
3

  1. CONACYT – Instituto de Ciencias, Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, Mexico
  2. Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Mexico
  3. Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
Download PDF Download RIS Download Bibtex

Abstract

Introduction: Osteoporosis affects over 200 million people worldwide causing nearly 9 mil-lion fractures annually, with more than half in America and Europe.
Objectives: This meta-analysis was conducted to investigate whether low milk intake is associated with an increased risk of fractures by summarizing all the available evidence.
Methods: Relevant studies were identified by searching the PubMed and EMBASE databases up to June 2020. The pooled relative risks with 95% confidence intervals were calculated.
Results: In a meta-regression analysis of 20 included studies (11 cohort and 9 case-control studies), a higher milk intake was not associated with a reduction in the total fracture risk in both sexes (OR 0.95, 95% CI: 0.84– 1.08), either in cohort (OR 0.91; 95% CI: 0.79–1.05) or case-control studies (OR 1.09; 95% CI: 0.82–1.44), as well as separately in men (OR 0.87; 95% CI: 0.71–1.07) and women (OR 0.95; 95% CI: 0.80–1.13).
Conclusion: Higher milk consumption is not associated with fracture risk reduction and should not be recommended for fracture prevention.
Go to article

Authors and Affiliations

Grzegorz Goncerz
1 2
Patrycja Kojm
3
Sylwia Skocelas
3
Krzysztof Więckowski
3
Tomasz Gallina
3
Paulina Pietrzyk
3
Sebastian Goncerz
3

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  2. Polish Institute of Evidence Based Medicine, Kraków, Poland
  3. Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Great economic losses to the dairy industry are associated with bovine mastitis, which results in poor milk quality and high treatment costs. Anti-inflammatory proteins play an important role in the suppression of the immune response against invading pathogenic microorganisms and are therefore being studied for possible use in the early diagnosis of mastitis. In our study, we used milk samples from 15 cows of Holstein Friesian breed with different health status (5 healthy, 5 subclinical, and 5 clinical animals), and tested them using immunohistochemical (IHC) analysis to evaluate the presence of IL-2, IL-10, TGF-β1, βDEF-2, DEF-3, and Cathelicidin LL37 proteins. The calculation of positively and negatively stained cells for each biomarker was performed using the semiquantitative counting method. We found the presence of all factors with the exception of Cathelicidin LL37, which was almost absent in milk samples of all animal groups. The significant decrease of IL-10, β-def2, and β-def3 expression levels within the 3 days of sampling, found in the milk of animals with sub- and clinical mastitis, indicates the loss of antiinflammatory protection of the affected cow’s udder. In contrast, the stable increase of IL-2 and TGF-β1 positive cells observed in the milk of mastitis-affected cows, and the similar expression of these factors in the milk of healthy animals, indicate the possible lack of involvement of these cytokines at an early stage of udder inflammation.
Go to article

Bibliography


Addis MF, Bronzo V, Puggioni GMG, Cacciotto C, Tedde V, Pagnozzi D, Locatelli C, Casula A, Curone G, Uzzau S, Moroni P (2017) Relationship between milk cathelicidin abundance and microbiologic culture in clinical mastitis. J Dairy Sci 100: 2944-2953.
Addis MF, Tedde V, Puggioni GM, Pisanu S, Casula A, Locatelli C, Rota N, Bronzo V, Moroni P, Uzzau S (2016) Evaluation of milk cathelicidin for detection of bovine mastitis. J Dairy Sci 99: 8250-8258.
Alnakip EM, Quintela-Baluja M, Böhme K, Fernández-No I, Caamaño-Antelo S, Calo-Mata P, Barros-Velázquez J (2014) The Immunology of Mammary Gland of Dairy Ruminants between Healthy and Inflammatory Conditions. J Vet Med 2014: 659801.
Alluwaimi AM (2000) Detection of IL-2 and IFN-gamma m RNA expression in bovine milk cells at the late stage of the lactation period with RT-PCR. Res Vet Sci 69: 185-187.
Alluwaimi AM, Cullor JS (2002) Cytokines gene expression patterns of bovine milk during middle and late stages of lactation. J Vet Med B Infect Dis Vet Public Health 49: 105-110.
Alluwaimi AM, Leutenegger CM, Farver TB, Rossitto PV, Smith WL, Cullor JS (2003) The Cytokine Markers in Staphylococcus aureus Mastitis of Bovine Mammary Gland. J Vet Med50: 105-111.
Alhussien MN, Dang AK (2020) Sensitive and rapid lateral- -flow assay for early detection of subclinical mammary infection in dairy cows. Sci Rep Jul 10: 11161.
Anton K, Glod J (2017) Tumor-secreted factors that induce mesenchymal stromal cell chemotaxis. In: Mesenchymal stromal cells as tumor stromal modulators. Academic Press is an imprint of Elsevier, pp 193-214.
Azooz MF, El-Wakeel SA, Yousef HM (2020) Financial and economic analyses of the impact of cattle mastitis on the profitability of Egyptian dairy farms. Vet World 13: 1750-1759.
Bannerman DD (2009) Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intramammary infection of dairy cows. J Anim Sci 87 (13 Suppl): 10-25.
Bannerman DD, Paape MJ, Chockalingam A (2006) Staphylococcus aureus intramammary infection elicits increased production of trans-forming growth factor-alpha, beta1, and beta2. Vet Immunol Immunopathol 112: 309-315.
Bannerman DD, Springer HR, Paape MJ, Kauf AC, Goff JP (2008) Evaluation of breed-dependent differences in the innate immune re-sponses of Holstein and Jersey cows to Staphylococcus aureus intramammary infection. J Dairy Res 75: 291-301.
Bartee E, McFadden G (2013) Cytokine synergy: an underappreciated contributor to innate anti-viral immunity. Cytokine 63: 237-240.
Bochniarz M, Zdzisińska B, Wawron W, Szczubiał M, Dąbrowski R (2017) Milk and serum IL-4, IL-6, IL-10, and amyloid A concentrations in cows with subclinical mastitis caused by coagulase-negative staphylococci. J Dairy Sci 100: 9674-9680.
Britti D, Peli A, Massimini G, Polci A, Luciani A, Famigli-Bergamini P (2005) Evaluation of TNF-alpha, IL-8 and IL-10 transcriptional activity in milk from healthy dairy cows during lactation period. Vet Res Commun 29 (Suppl 2): 281-284.
Chockalingam A, Paape MJ, Bannerman DD (2005) Increased milk levels of transforming growth factor-alpha, beta1, and beta2 during Esch-erichia coli-induced mastitis. J Dairy Sci 88: 1986-1993.
Cheng G, Yu A, Malek TR (2011) T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev 241: 63-76.
Cheng WN, Han SG (2020) Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments - A review. Asian-Australas J Anim Sci 33: 1699-1713.
Commins S, Steinke JW, Borish L (2008) The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol 121: 1108-1111.
Cubeddu T, Cacciotto C, Pisanu S, Tedde V, Alberti A, Pittau M, Dore S, Cannas A, Uzzau S, Rocca S, Addis MF (2017) Cathelicidin pro-duction and release by mammary epithelial cells during infectious mastitis. Vet Immunol Immunopathol 189: 66-70.
Dallas SL, Alliston T, Bonewald LF (2008) Transforming growth factor-β. In: Principles of bone biology. 2: 1145-1166.
De Vliegher S, Fox LK, Piepers S, McDougall S, Barkema HW (2012) Invited review: Mastitis in dairy heifers: nature of the disease, poten-tial impact, prevention, and control. J Dairy Sci 95:1025-1040.
Dooms H (2013) Interleukin-7: Fuel for the autoimmune attack. J Autoimmun 45 : 40-48.
Eckersall PD (2019) Proteomic approaches to control lactational parameters in dairy cows. Animal 13(S1): s82-s85.
Gauthier SF, Pouliot Y, Maubois JL (2006) Growth factors from bovine milk and colostrum: composition, extraction and biological activities. Lait 86: 99-125.
Gorelik L, Flavell RA (2002) Transforming growth factor- beta in T-cell biology. Nat Rev Immunol 2: 46-53.
Gulbe G, Pilmane M, Saulīte V, Doniņa S, Jermolajevs J, Peškova L, Valdovska A (2020) Cells and Cytokines in Milk of Subclinically Infected Bovine Mammary Glands after the Use of Immunomodulatory Composition GLP 810. Mediators Inflamm 2020: 8238029.
Hettinga K, van Valenberg H, de Vries S, Boeren S, van Hooijdonk T, van Arendonk J, Vervoort J (2011) The host defense proteome of human and bovine milk. PLoS One 6: e19433.
Isobe N, Nakamura J, Nakano H, Yoshimura Y (2009) Existence of functional lingual antimicrobial peptide in bovine milk. J Dairy Sci 92: 2691-2695.
Jiang Q, Li WQ, Aiello FB, Mazzucchelli R, Asefa B, Khaled AR, Durum SK (2005) Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev 16: 513-533.
Jakiel M, Jesiołkiewicz E, Ptak E (2011): Relationship between somatic cell score and daily milk yield traits of Polish HF cows. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego 7: 9-17.
Kawai K, Akamatsu H, Obayashi T, Nagahata H, Higuchi H, Iwano H, Oshida T, Yoshimura Y, Isobe N (2013) Relationship between con-centration of lingual antimicrobial peptide and somatic cell count in milk of dairy cows. Vet Immunol Immunopathol 153: 298-301.
Khan MZ, Khan A (2006) Basic facts of mastitis in dairy animals: A review. Pakistan Vet J 26: 204-208.
Kitano N, Isobe N, Noda J, Takahashi T (2020) Concentration patterns of antibacterial factors and immunoglobulin A antibody in foremilk fractions of healthy cows. Anim Sci J 91: e13372.
Komai T, Inoue M, Okamura T, Morita K, Iwasaki Y, Sumitomo S, Shoda H, Yamamoto K, Fujio K (2018) Transforming Growth Factor-β and Interleukin-10 Synergistically Regulate Humoral Immunity via Modulating Metabolic Signals. Front Immunol 9: 1364.
Krömker V, Leimbach S (2017) Mastitis treatment-Reduction in antibiotic usage in dairy cows. Reprod Domest Anim 52 (Suppl 3): 21-29.
Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu. Rev Immunol 19: 683-765.
Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117: 1162-72.
Paudyal S, Pena G, Melendez P, Roman-Muniz IN, Pinedo PJ (2018) Relationships among quarter milk leukocyte proportions and cow and quarter-level variables under different intramammary infection statuses. Transl Anim Science 2: 231-240.
Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J (2006) Human beta-defensins. Cell Mol Life Sci 63: 1294-1313.
Petzl W, Zerbe H, Günther J, Yang W, Seyfert HM, Nürnberg G, Schuberth HJ (2008) Escherichia coli, but not Staphylococcus aureus trig-gers an early increased expression of factors contributing to the innate immune defense in the udder of the cow. Vet Res 39: 18.
Pongthaisong P, Katawatin S, Thamrongyoswittayakul C, Roytrakul S (2016) Milk protein profiles in response to Streptococcus agalactiae subclinical mastitis in dairy cows. Anim Sci J 87: 92-98.
Riollet C, Rainard P, Poutrel B (2000) Cells and cytokines in inflammatory secretions of bovine mammary gland. Adv Exp Med Biol 480: 247-158.
Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170-181.
Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC (2005) Human defensins. J Mol Med (Berl) 83: 587-595.
Schukken YH, Günter J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DG, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM, members of the Pfizer mastitis research consortium (2011) Host- -response patterns of intramammary infections in dairy cows. Vet ImmunolImmunopathol 144: 270-289.
Stelwagen K, Carpenter E, Haigh B, Hodgkinson A, Wheeler TT (2009) Immune components of bovine colostrum and milk. J Anim Sci 87 (Suppl 13): 3-9.
Taylor A, Akdis M, Joss A, Akkoç T, Wenig R, Colonna M, Daigle I, Flory E, Blaser K, Akdis CA (2007) IL-10 inhibits CD28 and ICOS costimulations of T cells via src homology 2 domain-containing protein tyrosine phosphatase 1. J. Allergy Clin Immunol 120: 76-83.
Tzavlaki K, Moustakas A (2020) TGF-β Signaling. Biomolecules 10: 487.
Wheeler TT, Smolenski GA, Harris DP, Gupta SK, Haigh BJ, Broadhurst MK, Molenaar AJ, Stelwagen K (2012) Host-defence-related proteins in cows’ milk. Animal 6: 415-22.
Whelehan CJ, Barry-Reidy A, Meade KG, Eckersall PD, Chapwanya A, Narciandi F, Lloyd AT, Farrelly CO (2014) Characterisation and expression profile of the bovine cathelicidin gene repertoire in mammary tissue. BMC Genomics 15: 128.
Wollowski L, Heuwieser W, Kossatz A, Addis MF, Puggioni GMG, Meriaux L, Bertulat S (2021) The value of the biomarkers cathelicidin, milk amyloid A, and haptoglobin to diagnose and classify clinical and subclinical mastitis. J Dairy Sci 104: 2106-2122.
Go to article

Authors and Affiliations

K. Šerstņova
1
M. Pilmane
1
Z. Vitenberga-Verza
1
I. Melderis
1
Ł. Gontar
2
M. Kochański
2
A. Drutowska
2
G. Maróti
3 4
B. Prieto-Simón
5 6

  1. The Institute of Anatomy and Anthropology, RSU, 9 Kronvalda bulvaris, Riga, Latvia
  2. Research and Innovation Centre Pro-Akademia, Innowacyjna 9/11, 95-050 Konstantynow Lodzki, Poland
  3. Seqomics Biotechnology Ltd., Morahalom, Vallalkozak utja 7, Hungary
  4. Biological Research Center, Plant Biology Institute, Szeged, Temesvári krt. 62, Hungary
  5. Department of Electronic Engineering, Universitat Rovira i Virgili, C. de l’Escorxador, 43007 Tarragona, Spain
  6. ICREA, Pg. Lluís Companys 23, Barcelona, Spain
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study was to determine the association between subclinical acidosis (SARA) and subclinical ketosis (SCK) with biomarkers from an automatic milking system (AMS) measuring in relation to rumination time (RT), milk yield (MY), bodyweight (BW), milk temperature, the milk fat-to-protein ratio, and the electrical conductivity of milk at the udder quarters-level which can be read in fresh dairy cows. During the course of the study, all of the fresh dairy cows (n=711) were examined according to a general clinical investigation plan. The cows were selected for 1-30 days of milk (DIM) and were milked using Lely Astronaut® A3 milking robots with free traffic. Rumination time shows a statistically significant positive correlation with milk yield (milk temperature) and is negatively correlated with the fat and protein ratio. Healthy cows demonstrated the highest level of rumination time and the lowest milk temperature. The average BW for these cows was 1.64% lower than for the SARA group and the BW kg was 2.10% higher than SCK cows. MY was 14.01% lower in comparison with SARA and 6.42% higher in comparison with SCK. According to these results, some biomarkers from the AMS have an association with SARA and SCK. However, further research with a higher number of cows is needed to confirm this conclusion.

Go to article

Authors and Affiliations

R. Antanaitis
V. Juozaitienė
D. Malašauskienė
M. Televičius
M. Urbutis
Download PDF Download RIS Download Bibtex

Abstract

Inflammation together with lipolysis and ketogenesis in early lactation can cause low productivity and may be harmful to the cow health. The objective of the study was to determine if ketoprofen treatment in the first days following parturition would positively affect the milk production and whether it was associated with the metabolic and inflammatory response. The study was conducted on 30 cows divided into two groups of 15 cows each. The experimental group was treated with 3 mg × kg. bw. -1 ketoprofen for three consecutive days after parturition. The blood samples were collected on the first day of treatment and in the first and second week postpartum and they were analyzed for non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), tumour necrosis factor-a(TNF-a) and haptoglobin. The results suggested that ketoprofen-treated cows with a higher milk production had a significantly lower concentration of NEFA, BHB, TNF-a and haptoglobin in the first and second week postpartum. No differences were found in the control group in metabolic status regardless of the achieved level of milk production. Ketoprofen administration in postpartum cows can enhance the milk yield. The higher milk yield in the experimental group might be associated with a lower degree of lipolysis, ketogenesis and reduced inflammatory response in the first two weeks postpartum.
Go to article

Authors and Affiliations

Z. Kovacevic
D. Stojanovic
M. Cincovic
B. Belic
I. Davidov
N. Plavsa
M. Radinovic
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to compare the effect of controlled-release monensin on the automatic registered body condition score (BCS), and biomarkers registered using a fully automated inline analyzer, such as milk β-hydroxybutyrate (BHB), milk yield (MY) and milk lactate dehydrogenase (LDH).
Two experimental groups were formed: (1) monensin group (GK) supplemented with monensin (a monensin controlled release capsule (MCRC) of 32.4 g, n = 42) and (2) control group (GO) (capsule containing no monensin, n = 42). Treatment began 21 days before calving, and the experiment was finished one month after calving. In order to gather data about MY, BHB, and LDH, Herd Navigator a real-time analyzer (Lattec I/S, Hillerød, Denmark) was used together with a DeLaval milking robot (DeLaval Inc., Tumba, Sweden). BCS was measured using 3D BCS cameras (DeLaval, DeLaval International AB). All data were registered at one, 15 and 30 days after calving. The statistical analysis was performed using SPSS 26.0 (SPSS Inc., Chicago, USA) package. It was concluded that in the group of cows with monensin supplement (a monensin controlled release capsule of 32.4 g,), the body condition score was statistically significantly higher at the 15th (+0.24, p=0.003) and 30th (+0.52, p<0.001) days after calving, the productivity of cows in this group increased by 10.25% from the 1st to the 15th day and by 22.49% from the beginning of the experiment to the 30th day (p<0.001), lactate dehydrogenase activities at the 15th and 30th days after calving in this group were lower (p<0.001), and also in this group, the number of cows with a value of β-hydroxybutyrate of 0.06 mmol/L decreased from the beginning of the experiment to 30 days after calving by 4.70% (from 19.00% to 14.30%) compared with the control group.
Go to article

Authors and Affiliations

M. Urbutis
1
V. Juozaitienė
2
G. Palubinskas
3
K. Džermeikaitė
1
D. Bačėninaitė
1
R. Bilskis
4
W. Baumgartner
5
R. Antanaitis
1

  1. Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės St. 18, LT-47181 Kaunas, Lithuania
  2. Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, K. Donelaičio St. 58, LT-47181, Kaunas, Lithuania
  3. Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences,Tilžės 18, LT-47181 Kaunas, Lithuania
  4. Animal Husbandry Selections, Breeding Values and Dissemination Center, Agriculture Academy, Vytautas Magnus University, Universiteto St. 10A, Akademija, Lt-53361 Kaunas Distr., Lithuania
  5. University Clinic for Ruminants, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
Download PDF Download RIS Download Bibtex

Abstract

There is an increased interest in using automatic milking systems (AMS) to indirectly assess the welfare of dairy cows, but knowledge on analyzing the association between lameness, milk yield characteristics, and reproductive performance in cows is still insufficient. The main aims of this study were to evaluate the influence of lameness on several AMS variables and reproduc- tive performance indicators during the early stage of lactation and estrus in Lithuanian Black and White dairy cows, as well as to assess the associations between lameness, productivity and repro- ductive efficiency. A total of 418 milking cows (50.3±1.2 d postpartum) without any apparent reproductive disorder were monitored for hoof health status. Cows were assigned to two groups on the basis of visual locomotion scoring: “non-lame“cows (group 1; 74.20%) and cows presen- ting “lameness“ (lame cows) (group 2; 25.80%).

Productive and milking performances of dairy cows were recorded from 50 to 100 days in milk (DIM) and 1 day after the first estrus. The lameness was predominantly localized on the hind feet (79.60%) and less frequently - on the front feet (20.40%; p<0.001). Furthermore, the lameness had a tendency to decrease milk production (4.24%; p<0.05) and increase the diffe- rence in milk yield between rear and front quarters of the udder (1.20%; p<0.05). The frequency of milking (5.19%) was lower in lame cows (p<0.05). The lame cows during estrus showed a more pronounced decrement in milk yield and milking frequency (p<0.05), and also higher milk progesterone concentration values (1.55-1.76 time’s; p<0.001), and an increasing number of inseminations (11.69%; p<0.05) were observed. The results highlighted that analysis of data from AMS programs can be a successful tool for reducing risk factors related to the effective management of reproductive performance and hoof health of dairy cows.

Go to article

Authors and Affiliations

G. Urbonavicius
R. Antanaitis
V. Zilaitis
S. Tusas
L. Kajokiene
J. Zymantiene
U. Spancerniene
A. Gavelis
V. Juskiene
V. Juozaitiene
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate the possibility to predict outcomes of artificial insemi- nation (AI) in dairy cows based on in-line milk progesterone (P4) concentration. The research was carried out on the herd of loose housing 245 dairy cows of 2-4 lactations, with average milk yielding 11.000 kg per cow. Milk sampling, measuring, and recording of milk P4 concentration was carried out using the Herd Navigator (HN). The grouping was performed according to the following three indices: the first by reproductive condition – pregnant or not pregnant after AI, the second by P4 concentration from day 20 before AI to day 20 after AI, and the third by P4 concentration at AI time. There was a significant difference in P4 concentration in the group of pregnant cows from day 15 to day 9 before AI, and it was by 18.3% higher com- pared to that in the group of non-pregnant cows in the said period (p<0.01). The milk P4 concen- trations began to differ mostly from day 10 after AI. At that time, the average P4 concentration in the group of pregnant dairy cows was by 36.8% higher compared to that in the group of non-pregnant cows (p<0.01). A statistically significant difference between the ratio of the cows with high, medium, and low P4 concentration on days 20-16 before AI (p<0.01) was determined. The highest number of cows with up to 2-3 ng/ml P4 concentration became pregnant at the AI time.
In-line milk P4 records captured on day 10-15 before AI can be used to predict the proper for reproduction period. By P4 concentrations on day10 after AI, the ratio of pregnant cows in herd can be assessed.
Go to article

Authors and Affiliations

A. Gavelis
1
A. Juozaitis
2
R. Japertienė
1
G. Palubinskas
1
V. Juozaitienė
1
V. Žilaitis
3

  1. Department of Animal Breeding, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės St. 18, Kaunas, Lithuania
  2. Department of Animal Nutrition, Veterinary Academy,Lithuanian University of Health Sciences, Tilžės St. 18, Kaunas, Lithuania
  3. Large Animal Clinic, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės St. 18, Kaunas, Lithuania
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine the effects of an ohmic heating (OH) process with different electric field intensities on Listeria monocytogenes inactivation in protein-enriched cow milk. Protein powder was added at rates of 2.5%, 5% and 7.5% in 1.5% fat content milk, and L. monocytogenes (ATCC 13932) strain was then inoculated into the samples. The OH process was carried out in a laboratory-type pilot unit created using stainless steel electrodes, a K-type thermocouple, a datalogger and power supply providing AC current at 0-250 V, 10 A. The inoculated milk samples were heated to 63°C by applying an electric field intensity of 10V/cm and 20V/cm. L. monocytogenes counts, pH, color measurement and hydroxymethylfurfurol levels were then determined. OH applied with an electric field intensity of 10 V/cm caused an average decrease of 5 logs in L. monocytogenes level in the samples containing 2.5% protein and decreased below the detection limit (<1 log) at the 9th minute (p<0.05). Similarly, application of an electric field intensity of 20 V/cm in milk containing 2.5% and 5% protein caused the L.monocytogenes level to decrease below the detection limit (<1 log) at 2 minutes 30 seconds (p<0.05). No change was observed in the L* (brightness) values of the samples but it was determined that there was a slight increase in pH, a* (redness) and b* (yellowness) values compared to the control group. It was observed that the inactivation of L. monocytogenes by OH depends on the duration of the OH process, protein concentration in the milk and the applied voltage gradient.
Go to article

Bibliography

1. Ahmad T, Butt MZ, Aadil RM, Inam‐ur‐Raheem M, Abdullah Bekhit AE, Guimarães JT, Balthazar CF, Rocha RS, Esmerino EA, Freitas MQ, Silva MC, Sameen A, Cruz AG (2019) Impact of nonthermal processing on different milk enzymes. Int J Dairy Tech 72: 481-495.
2. Altuntas S, Korukluoğlu M (2018) Listeria monocytogenes in food facilities and new approaches for struggle. J Food 43:101-113.
3. Assiry AM, Gaily MH, Alsamee M, Sarifudin A (2010) Electrical conductivity of seawater during ohmic heating. Desalination 260: 9-17.
4. Awuah GB, Ramaswamy HS, Economides A (2007) Thermal processing and quality: Principles and overview. Chem Eng Process 46: 584-602.
5. Balpetek D, Gürbüz U (2015) Application of ohmic heating system in meat thawing. Procedia Soc 195: 2822-2828.
6. Belfort M, Cherkerzian S, Bell K, Soldateli B, Cordova Ramos E, Palmer C, Steele T, Pepin H, Ellard D, Drouin K, Inder, T (2020) Macronutrient intake from human milk, infant growth, and body composition at term equivalent age: a longitudinal study of hospitalized very preterm infants. Nutrients 12: 2249.
7. Cevik M, Icier F (2020) Characterization of viscoelastic properties of minced beef meat thawed by ohmic and conventional meth-ods. Food Sci Technol Int 26: 277-290.
8. Cho WI, Kim EJ, Hwang HJ, Cha YH, Cheon HS, Choi JB, Chung MS (2017) Continuous ohmic heating system for the pasteurization of fermented red pepper paste. Innov Food Sci Emerg Technol 42: 190-196.
9. Coimbra LO, Vidal VA, Silva R, Rocha RS, Guimarães JT, Balthazar CF, Cruz AG (2020) Are ohmic heating-treated whey dairy beverages an innovation? Insights of the Q methodology. LWT 134: 110052.
10. Costa NR, Cappato LP, Ferreira MV, Pires RP, Moraes J, Esmerino EA, Silva R, Neto RP, Tavares MI, Freitas MQ, Júnior RN, Rodrigues FN, Bisaggio RC, Cavalcanti RN, Raices RSL, Silva MC, Cruz AG (2018) Ohmic Heating: A potential technology for sweet whey processing. Food Res Int 106: 771-779.
11. Inmanee P, Kamonpatana P, Pirak T (2019) Ohmic heating effects on Listeria monocytogenes inactivation, and chemical, physical, and sensory characteristic alterations for vacuum packaged sausage during postpasteurization. LWT 108: 183-189.
12. Jaeger H, Janositz A, Knorr D (2010) The Maillard reaction and its control during food processing. The potential of emerging technologies. Pathol Biol 58: 207-213.
13. Kallipolitis BH, Gahan CG, Piveteau P (2020) Factors contributing to Listeria monocytogenes transmission and impact on food safety. Curr Opin Food Sci 36: 9-17.
14. Kim SS, Kang DH (2015) Effect of milk fat content on the performance of ohmic heating for inactivation of Escherichia coli O157: H7, Salmonella enterica serovar Typhimurium and Listeria monocytogenes. J Appl Microbiol 119: 475-486.
15. Knirsch MC, Dos Santos CA, de Oliveira Soares AA, Penna TC (2010) Ohmic heating–a review. Trends Food Sci Technol 21: 436-441.
16. Lee JY, Kim SS, Kang DH (2015) Effect of pH for inactivation of Escherichia coli O157: H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice by ohmic heating. LWT 62: 83-88.
17. Morales FJ, Jiménez-Pérez S (1999) HMF formation during heat treatment of milk type products as related to milkfat content. J Food Sci 64: 855–859.
18. Morales FJ, Jiménez-Pérez S (2001) Hydroxymethylfurfural determination in infant milk-based formulas by micellar electrokinetic capillary chromatography. Food Chem 72: 525-531.
19. Özkale S, Kahraman HA (2023) Determination of the effect of milk fat on the inactivation of Listeria monocytogenes by ohmic heat-ing. Ankara Univ Vet Fak Derg 70: 277-283.
20. Park IK, Kang DH (2013) Effect of electropermeabilization by ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water and apple juice. Appl Environ Microbiol 79: 7122-7129.
21. Parmar P, Singh AK, Meena GS, Borad S, Raju PN (2018) Application of ohmic heating for concentration of milk. J Food Sci Tech-nol 55: 4956-4963.
22. Pereira MO, Guimarães JT, Ramos GL, do Prado-Silva L, Nascimento JS, Sant’Ana AS, Cruz AG (2020) Inactivation kinetics of Lis-teria monocytogenes in whey dairy beverage processed with ohmic heating. LWT 127: 109420.
23. Pires RP, Cappato LP, Guimarães JT, Rocha RS, Silva R, Balthazar CF, Freitas MQ, Silva PHF, Neto RPC, Tavares MIB, Granato D, Raices RSL, Silva MC, Cruz AG (2020) Ohmic heating for infant formula processing: Evaluating the effect of different voltage gra-dient. J Food Eng 280: 109989.
24. Sagong HG, Lee SY, Chang PS, Heu S, Ryu S, Choi YJ, Kang DH (2011) Combined effect of ultrasound and organic acids to reduce Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int J Food Microbiol 145: 287-292.
25. Sakr M, Liu S (2014) A comprehensive review on applications of ohmic heating (OH). Renewable Sustainable Energy Rev 39: 262-269.
26. Salas AA, Jerome M, Finck A, Razzaghy J, Chandler-Laney P, Carlo WA (2022) Body composition of extremely preterm infants fed protein-enriched, fortified milk: a randomized trial. Pediatr Res 91: 1231-1237.
27. Shi C, Jia Z, Chen Y, Yang M, Liu X, Sun Y, Zheng, Z, Zhang X, Song K, Cui L, Baloch AB, Xia X (2015) Inactivation of Cronobacter sakazakii in reconstituted infant formula by combination of thymoquinone and mild heat. J Appl Microbiol 119: 1700-1706.
28. Somavat R, Mohamed HM, Chung YK, Yousef AE, Sastry SK (2012) Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating. J Food Eng 108: 69-76.
29. Somavat R, Mohamed HM, Sastry SK (2013). Inactivation kinetics of Bacillus coagulans spores under ohmic and conventional heating. LWT 54: 194–198.
30. Tian X, Shao L, Yu Q, Liu Y, Li X, Dai R (2019) Evaluation of structural changes and intracellular substance leakage of Escherichia coli O157: H7 induced by ohmic heating. J Appl Microbiol 127: 1430-1441.
31. Urgu M, Saatli TE, Türk A, Koca N (2017) Determination of hydroxymethylfurfural content of heat-treated milk (pasteurized, UHT and lactose-hydrolised UHT milk). Academic Food 15: 249-255.
32. Wang C, Llave Y, Sakai N, Fukuoka M (2021) Analysis of thermal processing of liquid eggs using a high frequency ohmic heating: Experimental and computer simulation approaches. Innov Food Sci Emerg Technol 73: 102792


Go to article

Authors and Affiliations

R.Y. Ayyıldız
1
H.A. Kahraman
2

  1. Department of Food Hygiene and Technology, Institute of Health Sciences, University of Burdur Mehmet Akif Ersoy, 15030, Burdur, Turkey
  2. Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030, Burdur, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The aims of this study were to evaluate the prevalence of Coxiella burnetii on both herd and animal level based on ELISA and PCR tests. Antibodies to C. burnetii were detected in 22 out of the 24 bulk tank milk samples (91.6%) tested by ELISA and the IS1111 element of C. burnetii was detected in 10 out of the 24 samples (41.6%) by real-time polymerase chain reaction (PCR). ELISA testing showed individual seropositivity in 67 out of the 165 cows (40.6%) examined in 24 dairy cattle farms in different parts of the Czech Republic. Our study revealed that the prevalence of C. burnetii has increased substantially in the Czech Republic over the past 30 years, and that the causative agent is a potential risk factor for some reproductive problems in dairy farms and a possible risk factor for human infection.
Go to article

Bibliography


Agerholm JS (2013) Coxiella burnetii associated reproductive disorders in domestic animals - a critical review. Acta Vet Scand 55: 13.
Dobos A, Balla E (2021) Industrial dairy cattle farms in Hungary a source of Coxiella burnetii infection in humans. Vector Borne Zoonotic Dis. 21: 498-501.
Dobos A, Gábor G, Wehmann E, Dénes B, Póth-Szebenyi B, Kovács ÁB, Gyuranecz M (2020a) Serological screening for Coxiella burnetii in the context of early pregnancy loss in dairy cows. Acta Vet Hung 68: 305-309.
Dobos A, Kreizinger Z, Kovács ÁB, Gyuranecz M (2020b) Prevalence of Coxiella burnetii in Central and Eastern European dairy herds. Comp Immunol Microbiol Infect Dis 72: 101489.
Duron O, Sidi-Boumedine K, Rousset E, Moutailler S, Jourdain E (2015) The importance of ticks in Q fever transmission: what has (and has not) been demonstrated? Trends Parasitol. 31: 536-552.
ECDC (2019) European Centre for Disease Prevention and Control. Introduction to the annual epidemiological report. Q fever Annual Epide-miological Report. ECDC, Stockholm, 2019.
Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, Mege JL, Maurin M, Raoult D (2017) From Q fever to Coxiella burnetii infection: a paradigm change. Clin Microbiol Rev 30: 115-190
Enserink M (2010) Infectious diseases. Questions abound in Q-fever explosion in the Netherlands. Science 327: 266-267
Ghaoui H, Achour N, Saad-Djaballah A, Smai A, Temim S, Bitam I (2019) Between livestock’s and humans, Q fever disease is emerging at low noise. Acta Sci Microbiol 2: 104-132
Hubálek Z, Juricová Z, Svobodová S, Halouzka J (1993) A serologic survey for some bacterial and viral zoonoses in game animals in the Czech Republic. J Wildl Dis 29: 604-607.
Literák I (1990) Occurrence of Coxiella burnetii antibodies in cattle, sheep and small terrestrial mammals in the western region of Bohemia [Article in Czech]. Vet Med (Praha) 40: 77-80.
Literák I, Calvo Rodríguez B (1994) Latent Q fever in cattle in southern Moravia (Czech Republic). Cent Eur J Publ Health 2: 91-94.
Literák I, Kroupa L (1998) Herd-level Coxiella burnetii seroprevalence was not associated with herd-level bree- ding performance in Czech dairy herds. Prev Vet Med 33: 261-265.
Loftis AD, Reeves WK, Szumlas DE, Abbassy MM, Helmy IM, Moriarity JR (2006) Rickettsial agents in Egyptian ticks collected from domestic animals. Exp Appl Acarol 40: 67-81.
López-Gatius F, Almeria S, Garcia-Ispierto I (2012) Serolo- gical screening for Coxiella burnetii infection and related reproductive perfor-mance in high producing dairy cows. Res Vet Sci 93: 67-73.
Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12: 518-553.
Niemczuk K, Szymańska-Czerwińska M, Zarzecka A, Konarska H (2011) Q fever in a cattle herd and humans in the south-eastern Poland. Laboratory diagnosis of the disease using serological and molecular methods. Bull Vet Inst Pulawy 55: 593-598.
OIE (2018) Manual of diagnostic tests and vaccines for terrestrial animals. Volume 1, Part 3, Section 3. Chapter 3.1.16. Q fever. World Or-ganisation for Animal Health, 8th edition.
Patocka F, Kubelka V (1953) Studies on Q fever. Cesk Epidemiol Mikrobiol Immunol 2: 340-352.
R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Řehácek J. (1987) Epidemiology and significance of Q fever in Czechoslovakia. Zbl Bakt Mikrobiol Hyg Ser A: Med Microbiol Infect Dis Virol Parasitol 267: 16-19.
Rodolakis A, Berri M, Hechard C, Caudron C, Souriau A, Bodier CC, Blanchard B, Camuset P, Devillechaise P, Natorp JC, Vadet JP, Arri-cau- Bouvery N (2007) Compa- rison of Coxiella burnetii shedding in milk of dairy bovine, caprine, and ovine herds. J Dairy Sci 90: 5352-5360.
Schimmer B, Schotten N, van Engelen E, Hautvast JLAP, Schneeberger M, van Duijnhoven YTHP (2014) Coxiella burnetii seroprevalence and risk for humans on dairy cattle farms, the Netherlands, 2010-2011. Emerg Infect Dis 20: 417-425.
Splino M, Beran J, Chlíbek R (2003) Q fever outbreak during the Czech Army deployment in Bosnia. Mil Med 168: 840-842.
Statni Veterinarni Sprava (2018) Official Veterinary Report of the Czech Republic [in Czech].
Szymańska-Czerwińska M, Galińska EM, Niemczuk K, Zasępa M (2013) Prevalence of Coxiella burnetii infection in foresters in the south-eastern Poland and comparison of diagnostic methods. Ann Agric Environ Med 20: 699-704.
van der Hoek W, Morroy G, Renders NH, Wever PC, Hermans MH, Leenders AC, Schneeberger PM (2012) Epidemic Q fever in humans in the Netherlands. Adv Exp Med Biol 984: 329-364.
Go to article

Authors and Affiliations

A. Dobos
1
I. Fodor
1
T. Tekin
2
D. Đuričić
3
M. Samardzija
4

  1. CEVA-Phylaxia Co. Ltd., Szállás u. 5, Budapest, H-1107, Hungary
  2. Ceva Animal Health Slovakia, Sro. Račianska 153, 831 53 Bratislava, Slovakia
  3. Mount-Trad d.o.o., Industrijska 13, 43280, Garešnica, Croatia
  4. Faculty of Veterinary Medicine University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
Download PDF Download RIS Download Bibtex

Abstract

Effects of fermented extruded rye flour supplements with Lactobacillus sakei KTU05-6 or Pediococcus pentosaceus BaltBio02 on milk production and composition, as well as ruminal parameters, were determined in Lithuanian Black & White dairy cows. Also, determination of antimicrobial activities of tested lactic acid bacteria (LAB) against a variety of pathogenic and opportunistic bacterial strains previously isolated from diseased cattle was performed. The highest antimicrobial activity was demonstrated in L. sakei against S. aureus, and in P. pentosaceus against P. aeruginosa and S. aureus. The count of LAB in the supplements after 72 h of fermentation of extruded rye flour with L. sakei and P. pentosaceus was 9.6±0.4 log10 CFU/g and 9.5±0.3 log10 CFU/g, respectively. All cows (n=60) were fed the same basal diet. The treatment differences were achieved by individually incorporating (65 d.) one of the supplements: L. sakei KTU05-6 (group B; n=20) or P. pentosaceus BaltBio02 (group C; n=20). The control group A (n=20) was on the basal diet only. A supplement fermented with L. sakei does not have a significant influence on dairy cattle milk production and rumen fluid parameters. The type of LAB used has a significant influence (p<0.0001) on microbiological parameters of the rumen (TCM, TCL, TCE). The milk yield was increased (p≤0.05) using P. pentosaceus BaltBio02 supplement, and further research is needed to identify w hat is the main mechanism of the positive action.

Go to article

Authors and Affiliations

V. Lele
R. Zelvyte
I. Monkeviciene
J. Kantautaite
R. Stankevicius
M. Ruzauskas
A. Sederevicius
R. Antanaitis
E. Bartkiene
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to determine the levels of milk cell total protein (TP), reduced nicotinamide adenine dinucleotide phosphate (NADPH), total glutathione (tGSH), activities of glucose-6-phos- phate dehydrogenase (G6PD) and glutathione peroxidase (GPx) in subclinical mastitic cows. Milk from each udder was collected and grouped by the California Mastitis Test. Then, a somatic cell count (SCC) was performed, and the groups were re-scored as control (5–87 × 103 cells), 1st group (154–381 × 103 cells), 2nd group (418–851 × 103 cells), 3rd group (914–1958 × 103 cells), and 4th group (2275–8528 × 103 cells). Milk cell TP, NADPH, tGSH levels, G6PD, and GPx ac- tivities were assessed. Microbiological diagnosis and aerobic mesophyle general organism (AMG, cfu/g) were also conducted. In mastitic milk, TP, NADPH, and tGSH levels, and G6PD and GPx activities were significantly reduced per cell (in samples of 106 cells). In addition, milk SCC was positively correlated with AMG (r=0.561, p<0.001), NADPH (r=0.380, p<0.01), TP (r=0.347, p<0.01) and G6PD (r=0.540, p<0.001). There was also positive correlation between NADPH (r=0.428, p<0.01), TP (r=0.638, p<0.001) and AMG. NADPH was positively correlated with TP (r=0.239, p<0.05), GPx (r=0.265, p<0.05) and G6PD (r=0.248, p=0.056). Total protein was positively correlated with tGSH (r=0.354, p<0.01) and G6PD (r=0.643, p<0.001). There was a negative correlation between tGSH and GPx activity (r=-0.306, p<0.05). The microbiological analysis showed the following ratio of pathogens: Coagulase-Negative Staphylococci 66.6%, Streptococcus spp 9.5%, Bacillus spp 9.5%, yeast 4.8%, and mixed infections 9.5%.

As a conclusion, when evaluating the enzyme and oxidative stress parameters in milk, it is more suitable to assign values based on cell count rather than ml of milk. The linear correlation between the SCC and AMG, milk cell NADPH, TP and G6PD suggests that these parameters could be used as markers of mastitis.

Go to article

Authors and Affiliations

P.P. Akalin
Y. Ergün
N. Başpinar
G. Doğruer
A. Küçükgül
Z. Cantekin
M. İşgör
M. Saribay
E. Koldaş
A. Baştan
S. Salar
S. Pehlivanlar
Download PDF Download RIS Download Bibtex

Abstract

This study was conducted to determine the serum and milk levels of thiobarbturic acid-reac- tive substances (TBARS), nitric oxide (NO), superoxide dismutase (SOD), glutathione peroxi- dase (GSH-Px), vitamin E and selenium, IL-4 and IL-6 in lactating dairy cows affected with bloody milk using commercially available ELISA kits. Milk and whole blood samples were collected from 60 cows affected with bloody milk and 20 apparently healthy cows for control. In the serum, levels of GSH-Px and SOD were significantly (p˂0.05) higher in healthy cows compared to cows affected with bloody milk while the levels of TBARS and NO were significantly (p˂0.05) higher in affected cows. In the milk, levels of SOD, TBARS and NO were significantly (p˂0.05) higher in affected cows. In the serum, levels of vitamin E were significantly (p˂0.05) lower in affected cows compared to healthy cows, while no significant changes were observed in the levels of this vitamin in the milk between healthy and affected cows. In the serum, levels of selenium were significantly (p˂0.05) lower in affected cows while in milk, selenium levels were significantly (p˂0.05) higher in affected cows compared to healthy ones. Levels of IL-4 were significantly (p˂0.05) lower in the serum and milk of affected cows compared to healthy cows while levels of IL-6 were significantly (p˂0.05) higher in both serum and milk of affected cows. Results of this study suggest a possible role of oxidative stress in the pathogenesis of bloody milk in dairy cows.

Go to article

Authors and Affiliations

Z. Bani Ismail
S.M. Abutarbush
K. Al-Qudah
F. Omoush
Download PDF Download RIS Download Bibtex

Abstract

Crimean Congo Hemorrhagic Fever (CCHF) is an important disease. The objective of this study was to investigate the presence / prevalence of CCHFV in tick and milk and blood samples of domestic ruminant (cattle, sheep and goat) in Resadiye town of Tokat province, where the disease is endemic. Although no virus RNA was found from whole blood and milk samples, it was detected in 10 of 78 (12.8%) tick pools. Viral loads ranged from 4.8x104 copies/ml to 2.66x109 copies/ml. Out of 171 serum samples examined, 113 (66.1%) were found to be positive for CCHFV. In conclusion, it was revealed that the prevalence of CCHFV was more common in small ruminants than in cattle. It is an important result in terms of public health that virus cannot be detected. The detection of virus RNA in tick samples shows that CCHFV is still endemic in domestic animals.

Go to article

Authors and Affiliations

T. Özüpak
H. Albayrak
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to compare the effect of parenteral and oral supplementation of Selenium (Se) and vitamin E (VTE) on selected antioxidant parameters in blood and colostrum as well as their effect on the incidence of mastitis in dairy cows during the final phase of gravidity (6 weeks) and first two weeks after calving. For the practical part of the study 36 dairy cows of Slovak pied breed in the second to fourth lactation-gestation cycle were selected. The animals weredivided into three groups: the control (C) and two experimental groups (D1 and D2). The selected groups were treated as follows: in group D1 products containing Se (Selevit inj.) and vitamin E (Erevit sol. inj.) were administered intramuscularly twice, six and three weeks prior to parturition; in group D2 a vitamin-minerals supplement in the form of sodium selenite (Na2SeO3) and dl-α-tocopherol acetate were supplemented orally for six weeks calving. The blood samples were collected from the vena jugularis in dairy cows approximately 42 days before calving (control sampling), on parturition day, and the 14th day after calving. Higher concentrations of Se and VTE were found in the blood plasma samples of both experimental groups collected on the day of parturition. In addition, the orally supplemented group (D2) showed higher Se and α-tocopherol concentrations in blood plasma on the14th day after calving as well a reduction of occurrence of mastitis by about 25 % compared to the control group. The relationship between inflammatory response and oxidative stress was also confirmed. The concentrations of milk malondialdehyde indicating lipid peroxidation during mastitis were significantly higher in milk samples from infected cows than in milk samples from healthy animals in each monitored group. In order to prevent oxidative stress and moderate inflammatory response in dairy cows it is very important to optimally balance their nutritive needs with an appropriate ratio of Se and VTE supplements. Therefore we still recommend supplementation of the cows’ postpartum dietwith 0.5 mg of Se/kg dry matter (DM) and 102 mg of dl-α-tocopherol acetate/kg DM to stabilize their optimal blood levels, stimulate the activity of glutathione peroxidase and reduce the incidence of mastitis.
Go to article

Bibliography

Andrei S, Matei S, Fit N, Cernea C, Ciupe S, Bogdan S, Groza IS (2011) Glutathione peroxidase activity and its relationship with somatic cell count, number of colony forming units and protein content in subclinical mastitis cow’s milk. Rom Biotechnol Letters 16: 6209-6217.
Andrei S, Matei S, Rugina D, Bogdan L, Stefanut C (2016) Interrelationships between the content of oxidative markers, antioxidative status, and somatic cell count in cow’s milk. Czech J Anim Sci 61: 407-413.
AOAC, Associatition of Official Analytical Chemists Interntional (2001) Official methods of analysis. 17th ed., Horwitz W. (ed): AOAC Inc., Arlington, USA, ISBN 0-935584-42-0.
Bouwstra RJ, Nielen M, Stegeman JA, Dobbelaar P, Newbold JR, Jansen EHJM, Van Werven T (2010) Vitamin E supplementation during the dry period in dairy cattle. Part 1: Adverse effect on incidence of mastitis postpartum in a double-blind randomized field trial. J Dairy Sci 93: 5684-5695.
Bujňák L, Maskaľová I, Vajda V (2011) Determination of buffering capacity of selected fermented feedstuffs and the effect of dietary acid-base status on ruminal fluid pH. Acta Vet Brno 80: 269-273.
Castillo C, Hernandez J, Valverde I, Pereira V, Sotillo J, Alonso M, Benedito JL (2006) Plasma malondialdehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res Vet Sci 80: 133-139.
Cohen RD, King BD, Guenther C, Janzen ED (1991) Effect of pre-partum parenteral supplementation of pregnant beef cows with selenium/vitamin E on cow and calf plasma selenium and productivity. Can Vet J 32: 113-115.
Grešáková L, Čobanová K, Faix S (2013) Selenium retention in lambs fed diets supplemented with selenium from inorganic sources. Small Rumin Res 111: 76-82.
Hawari AD, Al-Dabbas F (2008) Prevalence and distribution of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Jordan. Am J Anim Vet Sci 3: 36-39.
Hess D, Keller HE, Oberlin B, Bonfanti R, Schüep W (1991) Simultaneous determination of retinol, tocopherols, carotenes and lycopene in plasma by means of high-performance liquid chromatography on reversed phase. Int J Vitam Nutri Res 61: 232-238. https://pubmed.ncbi.nlm. nih.gov/1794952/
Hoque MN, Das ZC, Rahman AN, Hoque MM (2016) Effect of administration of vitamin E, selenium and antimicrobial therapy on incidence of mastitis, productive and reproductive performances in dairy cows. International J Vet Sci Med 4: 63-70.
Jackson P, Cockcroft P (2002) Clinical examination of farm animals. Blackwell Science Ltd Oxford, UK, ISBN 0-632-05706-8, pp 154-166.
Kafilzadeh F, Kheirmanesh H, ShabankarehHK, Targhibi MR, Maleki E, Ebrahimi M, Meng GY, (2014) Comparing the effect of oral supplementation of vitamin E, injective vitamin E and selenium or both during late pregnancy on production and reproductive performance and immune function of dairy cows and calves. Scientific World Journal, 2014, Article ID 1658415.
Khatti A, Mehrotra S, Patel PK, Singh G., Maurya VP, Mahla AS, Chaudhari RK, Das GK, Singh M., Sarkar M., Kumar Z, Krysznaswamy HN (2017) Supplementation of vitamin E, selenium and increased energy allowance mitigates the transition stress and improves postpartum reproductive performance in the crossbred cow. Theriogenology 104: 142-148.
Kommisrud E, Österas O, Vatn T (2005) Blood Selenium associated with health and fertility in Norvegian dairy herds. Acta Vet Scand 46: 229-240.
Liu F, Cottrell JJ, Furness JB,Rivera RL, Kelly FW, Wijesiriwardana U, Pustovit RV, Fothergill LJ, Bravo DM, Celi P, Leury BJ, Gabler MK, Dunshea FR (2016) Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs. Exp Physiol. 101: 801-810.
Meglia GE, Jensen SK, Lauridsen C, Waller KP (2006) a-Tocopherol concentration and stereoisomer composition in plasma and milk from dairy cows fed natural or synthetic vitamin E around calving. J Dairy Res 73: 227-234.
Mehdi Y, Dufrasne I (2016) Selenium in Cattle: A Review. Molecules 21: 545.
National Mastitis Council (2001) National Mastitis Council Recommended Mastitis Control Program.
Nutrient requirements of dairy cattle, NRC (2001) National Academy Press, Washington, DC, USA, 7th ed. O’Rourke D (2009) Nutrition and udder health in dairy cows: a review. Irish Vet J 62 (Suppl 4): 15-20.
Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erytrocyte glutathione peroxidase. Journal Lab Clin Med 70: 158-169.
Pavlata L, Illek J, Pechova A, Matejiček M (2002) Selenium Status of Cattle in the Czech Republic, Acta Vet. Brno 71: 3-8.
Pavlata L, Prasek J, Filipek A, Pechova A, (2004a) Influence of parenteral administration of selenium and vitamin E during pregnancy on selected metabolic parameters and colostrum quality in dairy cows at parturition. Vet Med Czech 49: 149-155.
Pavlata L, Podhorsky A, Pechova A, Dvorak R (2004b) Incidence of hypovitaminosis E in calves and therapeutic remedy by selenium-vitamin supplementation. Acta Vet. Brno 74: 209-216.
Pechova A, Pavlata L, Illek J (2005) Blood and tissue selenium determination by hydride generation atomic absorption spectrophotometry. Acta Vet. Brno 74: 483-490.
Waller PK, Hallen SC, Emanuelson U, Jensen SK (2007) Supplementation of RRR-alpha-tocopheryl acetate to periparturient dairy cows in commercial herds with high mastitis incidence. J Dairy Sci 90: 3640-3646.
Scholz H, Stober M (2002) Enzootic myodystrophia in preruminant calves. Inter Med and Sur in Cattle (in German). Parey Buchverlag, Berlin 1000-1004.
Sharma N, Singh NK, Singh OP, Pandey V, Verma PK (2011) Oxidative stress and antioxidant status during transition period in dairy cows. Asian-Austr J Anim Sci 24: 479-484.
Smith KL, Hogan JS, Weiss WP (1997) Dietary vitamin E and selenium affect mastitis and milk quality. J Anim. Sci 75: 1659-1665.
Spears JW, Weiss WP (2008) Role of antioxidants and trace elements in health and immunity of transition dairy cows. Vet J Sci 176: 70-76.
Turk R, Koledic M, Macesic N, Benic M, Dobranic V, Duricic D, Urbani A, Mestric ZF, Soggiu A, Bonizzi L, Roncada P (2017) The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows. Mljekarstvo 67: 91-101.
Zigo F, Vasil’ M, Ondrašovičová, S, Výrostková J, Bujok J, Pecka-Kielb E (2021) Maintaining optimal mammary gland health and prevention of mastitis. Front. Vet. Sci. 8: 607311.
Go to article

Authors and Affiliations

M. Vasiľ
1
F. Zigo
1
Z. Farkašová
1
E. Pecka-Kielb
2
J. Bujok
2
J. Illek
3

  1. Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Kosice, Komenského 73, Košice, 04001, Slovakia
  2. Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland
  3. Large Animal Clinical Laboratory, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The implementation of milk-run in Indonesia has been started since 2005. As a developing

country, there is a challenge to operate milk-run smoothly especially in urban area due to

severe traffic congestion and unfavourable road condition in some areas. This research aimed

to analyze the practice of milk-run operation in one of the biggest Japanese automotive

companies in Indonesia. Transportation Value Stream Mapping (TVSM) is applied in order

to perform just-in-time delivery in the supply chain before operating milk-run. It is discussed

that this company still need to continue in improving milk-run operation. The operation

system needs control and integration from manufacturer, supplier and logistics partner.

The advantage of milk-run operation is cost reduction and also support green logistics in

decreasing emission of carbondioxide (CO2) by reducing the number of trucks used.

Go to article

Authors and Affiliations

Humiras Hardi Purba
Adi Fitra
Aina Nindiani
Download PDF Download RIS Download Bibtex

Abstract

The objective of the milk-run design problem considered in this paper is to minimize transportation

and inventory costs by manipulating fleet size and the capacity of vehicles and

storage areas. Just as in the case of an inventory routing problem, the goal is to find a periodic

distribution policy with a plan on whom to serve, and how much to deliver by what

fleet of tugger trains travelling regularly on which routes. This problem boils down to determining

the trade-off between fleet size and storage capacity, i.e. the size of replenishment

batches that can minimize fleet size and storage capacity. A solution obtained in the declarative

model of the milk-run system under discussion allows to determine the routes for each

tugger train and the associated delivery times. In this context, the main contribution of

the present study is the identification of the relationship between takt time and the size

of replenishment batches, which allows to determine the delivery time windows for milkrun

delivery and, ultimately, the positioning of trade-off points. The results show that this

relationship is non-linear.

Go to article

Authors and Affiliations

Grzegorz Bocewicz
Wojciech Bożejko
Robert Wójcik
Zbigniew Banaszak
Download PDF Download RIS Download Bibtex

Abstract

Mycoplasma bovis is a highly contagious pathogen that causes clinical or subclinical mastitis. The present study was aimed for the isolation, molecular characterization and antibiogram determination of M. bovis from raw milk samples. Milk samples were collected randomly from lactating cows and buffaloes from different tehsils of district Faisalabad, Pakistan. Samples were inoculated on modified Hayflick medium and biochemical tests were performed for further confirmation of isolated M. bovis. Out of total 400 milk samples, 184 (46%) samples were found positive for culture method. The 16S-rRNA gene polymerase chain reaction was performed for molecular characterization of isolated M. bovis strains. Out of total 400 milk samples, 240 (60%) positive for M. bovis through PCR method were examined. The 16S-rRNA gene PCR positive isolated M. bovis strains were sequenced and results were compared using Maximum-likelihood method and sequenced strains of M. bovis were aligned and analyzed by Clustal W software. Antibiogram of isolated M. bovis strains was analyzed by disc diffusion assay against eight commonly used antibiotics. Tylosin (30μg) and Tilmicosin (15ug) showed inhibition zones of 32.34 ± 1.10 mm and 17.12 ± 0.93 mm respectively against isolated M. bovis which were found sensitive. Isolated M. bovis was found resistant to other commonly used antibiotics. Statistical analysis revealed that p-value was < 0.05 and the odds ratio was >1.0 at 95% CI. This study complemented the lack of epidemiological knowledge of molecular characterization, comparative effectiveness and resistance trends of isolated M. bovis strains against commonly used antibiotics.
Go to article

Bibliography

  1. Adorno BM, Salina A, Joaquim S, Guimarães FF, Lopes BC, Menozzi B, Langoni H (2021) Presence of Mollicutes and Mycoplasma bovis in nasal swabs from calves and in milk from cows with clinical mastitis. Vet Zootec 28: 001-009.
  2. Ahmad Z, Babar S, Abbas F, Awan MA, Abubakar M, Attique MA, Hassan Y, Rashid N, Ali M (2011) Identification and molecular characterization of Mycoplasma species from bovine lungs samples collected from slaughter house, Quetta, Balochistan, Pakistan. Pak J Life Soc Sci 9: 91-97.
  3. Ahmad Z, Babar S, Abbas F, Awan MA, Shafee M, Tariq MM, Mengal MA, Rashid N, Amin S, Taj K, Ali M (2014) Prevalence of Mycoplasma bovis in respiratory tract of cattle slaughtered in Balochistan, Pakistan. Pak Vet J 34: 46-49.
  4. Alhussen MA, Kirpichenko VV, Yatsentyuk SP, Nesterov AA, Byadovskaya OP, Zhbanovat TV, Sprygin AV (2021) Mycoplasma bovis, M. bovigenitalium and M. dispar as Bovine Pathogens: Brief characteristics of the pathogens (review). Agric Biol 56: 245-260.
  5. Kumar A, Verma AK, Gangwar NK, Rahal A (2012) Isolation, characterization and antibiogram of Mycoplasma bovis in sheep pneumonia. Asian J Anim Vet Adv 7: 149-157.
  6. Behera S, Rana R, Gupta PK, Kumar D, Sonal, Rekha V, Arun TR, Jena D (2018) Development of real- time PCR assay for the detection of Mycoplasma bovis. Trop Anim Health Prod 50: 875-882.
  7. Bokma J, Vereecke N, De Bleecker K, Callens J, Ribbens S, Nauwynck H, Haesebrouck F, Theuns S, Boyen F, Pardon B (2020) Phylogenomic analysis of Mycoplasma bovis from Belgian veal, dairy and beef herds. Vet Res 51: 121.
  8. Bokma J, Vereecke N, Nauwynck H, Haesebrouck F, Theuns S, Pardon B, Boyen F (2021) Genome-wide association study reveals genetic markers for antimicrobial resistance in Mycoplasma bovis. Microbiol Spectr 9: e0026221.
  9. Buller H, Blokhuis H, Jensen P, Keeling L (2018) Towards farm animal welfare and sustainability. Animals 2018, 8: 81.
  10. Caria M, Boselli C, Murgia L, Rosati R, Pazzona A (2013) Influence of low vacuum levels on milking characteristics of sheep, goat and buffalo. J Agr Eng 44: 217- 220.
  11. Cheng WN, Han SG (2020) Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments – A review. Asian-Australas J Anim Sci . 33: 1699-1713.
  12. Deeney A S, Collins R, Ridley AM (2021) Identification of Mycoplasma species and related organisms from ruminants in England and Wales during 2005-2019. BMC Vet Res 17: 325.
  13. Farid MA, Abo-Shosha AA, Belal ES, Hassan MM (2018) Genotyping of pathogenic Mycoplasma bovis isolated from cattle in Kafr El-Sheikh Province, Egypt. J Pure Appl Microbiol. 12: 2103-2109.
  14. Ghafar A, Mcgill D, Stevenson MA, Badar M, Kumbher A, Warriach MH, Gasser RB, Jabbar A (2020) A participatory investigation of bovine health and production issues in Pakistan. Front Vet Sci 7: 248.
  15. Hata E, Harada T, Itoh M (2019) Relationship between antimicrobial susceptibility and multilocus sequence type of Mycoplasma bovis isolates and development of a method for rapid detection of point mutations involved in decreased susceptibility to macrolides, lincosamides, tetracyclines, and spectinomycin. Appl Environ Microbiol 85: e0057519.
  16. Hudzicki J (2009) Kirby-Bauer disk diffusion susceptibility test protocol. Am J Mol Biol 8: 2009.
  17. Ilyas F, Gillani DQ, Yasin M, Iqbal MA, Javed I, Ahmad S, Nabi I (2022) Impact of Livestock and Fisheries on Economic Growth: An Empirical Analysis from Pakistan. Sarhad J Agric 38: 160-169.
  18. Imandar M, Pourbakhsh SA, Jamshidian M, Salehi TZ (2018) Isolation, identification and molecular characterization of Mycoplasma bovis in mastitic dairy cattle by PCR and culture methods. J Hell Vet Med Soc 69: 815-822.
  19. Imran M, Rehman I, Sulehria AQ, Butt YM, Khan AM, Ziauddin A (2021) Profile of Antimicrobial Susceptibility from Cattles’s Milk Isolates Suffering from Mastitis in District Lahore. J Biores Manag 8: 6-14.
  20. Khan ZU (2022) Laws, Issues, Challenges, Analysis of Livestock Sector and International Best Practices. J Dev Soc Sci 3: 271-283.
  21. Klein U, de Jong A, Moyaert H, El Garch F, Leon R, Richard-Mazet A, Rose M, Maes D, Pridmore A, Thomson JR, Ayling RD (2017) Antimicrobial susceptibility monitoring of Mycoplasma hyopneumoniae and Mycoplasma bovis isolated in Europe. Vet Microbiol 204: 188-193.
  22. Konigsson MH, Bolske G, Johansson KE (2002) Intraspecific variation in the 16S- rRNA gene sequences of Mycoplasma agalactiae and Mycoplasma bovis strains. Vet Microbiol 85: 209-220.
  23. Mahmood F, Khan A, Hussain R, Khan IA, Abbas RZ, Ali HM, Younus M (2017) Patho-bacteriological investigation of an outbreak of Mycoplasma bovis infection in calves-Emerging stealth assault. Microb Pathog 107: 404-408.
  24. Maunsell FP, Donovan GA, (2009) Mycoplasma bovis infections in young calves. Vet Clin North Am Food Anim Pract 25: 139-177.
  25. Maunsell FP, Woolums AR, Francoz D, Rosenbusch RF, Step DL, Wilson DJ, Janzen ED (2011) Mycoplasma bovis infections in cattle. J Vet Inter Med 25: 772-783.
  26. Mojsoska B, Ghoul M, Perron GG, Jenssen H, Alatraktchi FA (2021) Changes in toxin production of environmental Pseudomonas aeruginosa isolates exposed to sub- inhibitory concentrations of three common antibiotics. PloS One 16: e0248014.
  27. Nicholas RA, Fox LK, Lysnyansky I (2016) Mycoplasma mastitis in cattle: To cull or not to cull. Vet J 216: 142-147.
  28. Niu J, Wang D, Yan M, Chang Z, Xu Y, Sizhu S, Li Z, Hu S, Bi D (2021) Isolation, identification and biological characteristics of Mycoplasma bovis in yaks. Microb Pathog 150: 104691.
  29. Pal A, Chakravarty AK (2020) Disease resistance for different livestock species. Genet Breed Dis Resist Livest 2020: 271-296.
  30. Passchyn P, Piepers S, De Meulemeester L, Boyen F, Haesebrouck F, De Vliegher S (2012) Between-herd prevalence of Mycoplasma bovis in bulk milk in Flanders, Belgium Res Vet Sci 92: 219-220.
  31. Perez-Casal J, Prysliak T, Maina T, Suleman M, Jimbo S (2017) Status of the development of a vaccine against Mycoplasma bovis. Vaccine 35: 2902-2907.
  32. Romero J, Benavides E, Meza C (2018) Assessing financial impacts of subclinical mastitis on Colombian dairy farms. Front Vet Sci 5: 273
  33. Rossetti BC, Frey J, Pilo P (2010) Direct detection of Mycoplasma bovis in milk and tissue samples by real-time PCR. Molar Cell Pro. 24: 321-323.
  34. Salina A, Timenetsky J, Barbosa MS, Azevedo CM, Langoni H (2020) Microbiological and molecular detection of Mycoplasma bovis in milk samples from bovine clinical mastitis. Pesqui Vet Bras 40: 82-87.
  35. Shao Y, Wang Y, Yuan Y, Xie Y (2021) A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci Total Environ 798: 149205.
  36. Abadi AT, Rizvanov AA, Haertlé T, Blatt NL (2019) World Health Organization report: current crisis of antibiotic resistance. BioNanoScience 9: 778-788.
  37. Gogoi-Tiwari J, Tiwari HK, Wawegama NK, Premachandra C, Robertson ID, Fisher AD, Waichigio FK, Irons P, Aleri JW (2022) Prevalence of Mycoplasma bovis Infection in Calves and Dairy Cows in Western Australia. Vet Sci 9: 351-358.
  38. Vereecke N, Bokma J, Haesebrouck F, Nauwynck H, Boyen F, Pardon B, Theuns S (2020) High quality genome assemblies of Mycoplasma bovis using a taxon- specific Bonito basecaller for MinION and Flongle long-read nanopore sequencing. BMC Bioinform 21: 517.
  39. Verraes C, Claeys W, Cardoen S, Daube G, De Zutter L, Imberechts H, Dierick K, Herman L (2014) A review of the microbiological hazards of raw milk from animal species other than cows. Inter Dairy J 39: 121-130.
  40. Wisselink HJ, Smid B, Plater J, Ridley A, Andersson AM, Aspan A, Pohjanvirta T, Vahanikkila N, Larsen H, Hogberg J, Colin A, Tardy F (2019) A European interlaboratory trial to evaluate the performance of different PCR methods for Mycoplasma bovis diagnosis. BMC Vet Res 15: 86.
Go to article

Authors and Affiliations

A. Jabbar
1
M. Ashraf
1
S.U. Rahman
1
M.S. Sajid
2

  1. Institute of Microbiology, University of Agriculture, Jail Road, Faisalabad, Punjab 38000, Pakistan
  2. Department of parasitology, University of Agriculture, Jail Road, Faisalabad, Punjab 38000, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Improving production processes includes not only activities concerning manufacturing itself, but also all the activities that are necessary to achieve the main objectives. One such activity is transport, which, although a source of waste in terms of adding value to the product, is essential to the realization of the production process. Over the years, many methods have been developed to help manage supply and transport in such a way as to reduce it to the necessary minimum. In the paper, the problem of delivering components to a production area using trains and appropriately laid-out carriages was described. It is a milk run stop locations problem (MRSLP), whose proposed solution is based on the use of heuristic algorithms. Intelligent solutions are getting more and more popular in the industry because of the possible advantages they offer, especially those that include the possibility of finding an optimum local solution in a relatively short time and the prevention of human errors. In this paper, the applicability of three algorithms – tabu search, genetic algorithm, and simulated annealing – was explored.
Go to article

Authors and Affiliations

Joanna Kochańska
1
Anna Burduk
1
ORCID: ORCID
Dagmara Łapczyńska
1
Kamil Musiał
1

  1. Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland

This page uses 'cookies'. Learn more