Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Despite many technological possibilities, proper sanitation of sludge creates problems to their natural use. Thus, new solutions are still being looked for. Liming is one of the methods for sludge sanitation, however, rather expensive one. Seeking the substitute of high calcium content and non-toxic for environment has led to investigations on the application of mineral wastes - ashes from semi-dry sulfur removal from flue gases in the "Opole" power plant for sludge sanitation purposes. Ash was mixed with sludge in various proportions. After 3 days, the microbiological exams of the mixtures were carried out. The investigation data proved the performed sanitation effective and confirmed microbiological usability of the sludge for a natural use. The total contents of heavy metals and their distribution between particular fractions were determined in the sludge mixtures with mineral waste and in reference samples (i.e. sludge and mineral waste). No significant changes of metals proportion bound with biogenie fractions (fractions I- II) after addition of the mineral wastes to sludge were observed. Cadmium, zinc and partially chrome are bound with the iron and manganese oxides fraction (fraction III) which is sensitive to the redox potential changes. No significant change of contents was observed with the increase in a contribution of sludge or mineral waste. In all samples of the organic fraction (fraction IV) chrome and copper are bound in the highest amounts, and in the residue fraction (fraction V) cadmium, nickel and lead are bound, mainly. The investigation has showed that addition of optional proportions of sludge and mineral wastes mixtures into soil did not result in increase in heavy metals hazard. The investigation of the metals speciation in sludge and their mixtures with the mineral wastes showed similar metals distribution in individual fractions. The most hazardous elements for soil, water and plants such as lead, chrome, nickel, cadmium and zinc are bound in slightly soluble fractions and thus are hardly available to the ecosystem.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The cement industry has been using waste as a raw material for many years. Waste is also used as alternative fuel. Cement plants are an important element of the waste management system and fit the idea of a circular economy. When waste is recovered in the cement production process, direct and indirect CO 2 emissions are partially avoided. This article discusses the cement industry in Poland. The current situation in terms of the use of alternative fuels and raw materials in Poland, the different types of waste and the amount of waste used is discussed. The article discusses changes in the amount of waste (the increase in the amount of waste used as raw materials from the year 2006 to the year 2019) and the types of waste recovered in the cement production process and the possibility of closing material cycles on the plant scale (recycling to the primary process – cement kiln dust) and industry (using waste from other industries: metallurgy – granulated blast furnace slag, iron bearings; energy production – fly ash, reagypsum/phosphogypsum, fluidized bed combustion fly ash, and fluidized bed combustion bottom ash; wastewater treatment plants – sewage sludge, etc.). The analysis shows that the role of cement plants in waste management and the circular economy in Poland is important. Industrial waste from metallurgy, power plants, heat and power plants, wastewater treatment plants, and municipal waste is used as the raw material for the cement industry, leading to an industrial symbiosis.
Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
1
ORCID: ORCID
Eugeniusz Mokrzycki
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Kraków, Poland
  2. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

An importance of secondary mineral raw materials sources for economy was demonstrated as well as sources of its acquirement were outlined. Various aspects of waste use in economy were discussed, underlining importance of waste removal for improvement of environment. A related legal framework in Poland and European Union was outlined. Results of already carried works in research and stocktaking of mineral waste accumulations in Poland were reminded. Legal procedures aiming at exploitation of mineral waste deposits formally defined and similar facilities falling outside definition of mineral waste deposits were discussed. It was evidenced that a gap in the legal framework exists, regarding particularity of waste acquirement from anthropogenic mineral deposits. Consequently, a need to require a preparation of equivalent of a resource report, feasibility study and a plan defining exploitation and conversion modes for material lifted from waste accumulations was demonstrated.
For the sake of a clear terminology applied it was recommended to incorporate terms of “anthropogenic mineral resources” and “anthropogenic mineral deposit” as an appropriate adjustment to the existing regulation. A need to intensify stocktaking efforts on mineral waste accumulations in Poland was emphasized. It was also suggested that its results should be recognized in the Balance of Mineral Resources and State Resource Policy.
In summary a recommended legal framework to regulate acquirement of mineral waste, recognizing particularities of such processes, was presented.
Go to article

Bibliography

Act 1980. Act of January 31, 1980 on Environmental Protection and Formation. (Ustawa z dnia 31 stycznia 1980 r. o ochronie i kształtowaniu środowiska.) (Journal of Laws 1994. 49.196 as amended) (in Polish).

Act 1991. Act of March 9, 1991 on Amendments to the Mining Law (Ustawa z dnia 9 marca 1991 r. o zmianie Prawa górniczego) (Journal of Laws 1991.31.128) (in Polish).

Act 1997. Act of June 27, 1997 on Waste (Ustawa z dnia 27 czerwca 1997 r. o odpadach) (Journal of Laws 1997.96.592) (in Polish).

Act 2001. The Act on Waste of April 27, 2001 (Ustawa z dnia 27 kwietnia 2001 r. o odpadach) (Journal of Laws 2001.62.628) (in Polish).

Act 2008. Act of July 10, 2008 on Mineral Waste (Ustawa z dnia 10 lipca 2008 r. o odpadach wydobywczych) (Journal of Laws 2008. 138. 865) (in Polish).

Act 2012. Act of December 14, 2012 on Waste (Ustawa z dnia 14 grudnia 2012 r. o odpadach) (Journal of Laws 2013. 21) (in Polish). Act 2021.

Act of April 27, 2021 on Waste (Ustawa z dnia 27 kwietnia 2021 r. o odpadach) (Journal of Laws 2021. 62.628) (in Polish). GML 1994.

Act of February 4, 1994 Geological and Mining Law (Ustawa z dnia 4 lutego 1994 r. Prawo geologiczne i górnicze) (Journal of Laws 1994.27.96) (in Polish). GML 2011.

Act of June 9, 2011, Geological and Mining Law (Ustawa z dnia 9 czerwca 2011 r. Prawo geologiczne i górnicze) (Journal of Laws 2011.63.981, as amended) (in Polish).

ML 1953. Decree of May 6, 1953. Mining Law (Dekret z 6 maja 1953 r. Prawo górnicze) (Journal of Laws 1953.29.113) (in Polish).

Nieć, M. ed. 2002. Rules Documenting Mineral Resources (Zasady dokumentowania złóż kopalin stałych). Warszawa: Ministerstwo Środowiska, Departament Geologii i Koncesji Geologicznych, Komisja Zasobów Kopalin (in Polish).

Nieć et al. 2018 – Nieć, M., Uberman, R. and Galos, K. 2018. Clastic sedimentary anthropogenic mineral deposits (Okruchowe antropogeniczne złoża kopalin). Górnictwo Odkrywkowe 3, pp. 31–37 (in Polish).

Pietrzyk-Sokulska et al 2018 – Pietrzyk-Sokulska, E., Radwanek-Bąk, B. and Kulczycka, J. 2018. Secondary mineral resources: problems of nomenclature and classification in connection with the implementation of the circular economy (Mineralne surowce wtórne – problemy polskiego nazewnictwa i klasyfikacji w związku z realizacją gospodarki w obiegu zamkniętym). Przegląd Geologiczny 3, pp. 160–165 (in Polish).

POLVAL 2021. Polish Code for Valuation of Mineral Assets. Kraków: PSWZK (in Polish, in print).

Rules on Documenting Mineral Resources 2002. Warszawa: Ministry of Environment Protection.

Salminen et al. 2021 – Salminen, J., Garbarino, E., Orveillon, G., Saveyn, H., Mateos Aquilino, V., Llorens Gonzalez, T., Garcia Polonio, F., Horckmans, L., D`hugues, P., Balomenos, E., Dino, G., De La Feld, M., Madai, F., Faldessy, J., Mucsi, G., Gombkoto‘, I. and Calleja, I. 2021. Recovery of critical and other raw materials from mining waste and landfills. EUR 29744 EN. Publications Office of the European Union, Luxembourg, 2019, DOI: 10.2760/174367, JRC116131.

Strategy 2016. Strategy for responsible development (Strategia na rzecz odpowiedzialnego rozwoju). [Online] https://www.gov.pl/web/fundusze-regiony/informacje-o-strategii-na-rzecz-odpowiedzialnego-rozwoju [Accessed: 2021-08-04] (in Polish).

Suppes, R. and Heuss-Aßbichler, S. 2021. How to Identify Potentials and Barriers of Raw Materials Recovery from Tailings? Part I: A UNFC-Compliant Screening Approach for Site Selection. Resources 10(3), 26. DOI: 10.3390/resources10030026.

Szczęśniak, H. 1990. Hazards to natural environment resulting from accumulated mineral waste (Zagrożenia środowiska przyrodniczego w wyniku gromadzenia odpadów mineralnych). [In:] Rules for protection and formation of environment in areas with mineral deposits (Zasady ochrony i kształtowania środowiska przyrodniczego na obszarach złóż kopalin). Vol. 18. Warszawa: Szkoła Główna Gospodarstwa Wiejskiego – Akademia Rolnicza w Warszawie (in Polish).

Uberman, Ry. 2017. Accompanying minerals in lignite deposits. Volume II. Legal, economic and mining aspects of the development of accompanying minerals (Kopaliny towarzyszące w złożach węgla brunatnego. Tom II. Prawno – ekonomiczne oraz górnicze aspekty zagospodarowania kopalin towarzyszących). Kraków: MEERI PAS, pp. 128 (in Polish).

Uberman, Ry. 2021. Mineral waste in light of the provisions of the Act on waste, the Act on extractive waste, and the Geological and mining law. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 37(1), pp. 117–140.

Winterstetter et al 2021 – Winterstetter, A., Heuss-Assbichler, S., Stegemann, J., Kral, U., Wäger, P., Osmani, M. and Rechberger, H. 2021. The role of anthropogenic resource classification in supporting the transition to a circular economy. Journal of Cleaner Production 297. DOI: 10.1016/j.jclepro.2021.126753.
Go to article

Authors and Affiliations

Ryszard Uberman
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

A systematic increase in the demand for mineral raw materials combined with the difficulty of obtaining them from primary sources, made it necessary to use secondary ones including mineral waste. The effectiveness of the management of mineral waste stored in landfills and from current production depends on many factors. The most important ones include the legal regulations of this activity and the technical and organizational determinants of deposit exploitation, processing, and refining of minerals.
The paper analyzes the current waste (including mining waste) management regulations. The technological discrepancies in these regulations, as well as missing or inaccurate classifications, were demonstrated. The interchangeable use of notions: mining/mine and extractive/extraction is a primary source of problems. It also has to be noted that accompanying and joint minerals are not defined in appropriate legislation. Attention was also paid to the omission of important issues in these regulations, e.g. product structure, construction of anthropogenic deposits, etc. It was emphasized and demonstrated with examples that the comprehensive and rational exploitation of mineral deposits, combined with processing and refining of mineral raw materials is an effective way of using mineral waste. The obtained results allowed for formulating proposals regarding legal provisions regulating waste management and the recommendation of technical and organizational solutions for the activities of mining, processing, and refining of mineral raw materials.
Go to article

Authors and Affiliations

Ryszard Uberman
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland

This page uses 'cookies'. Learn more