Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, a multi-pad bump-type foil thrust bearing with a taper-land height profile is investigated. A detailed thermo-elastohydrodynamic (TEHD) finite element (FE) model is used comprising all bearing pads instead of only a single pad. Although the single-pad reduction approach is commonly applied, it can not accurately account for the different temperatures, loads, and power losses for individual pads in the case of misalignment. The model accounts for the deformations of the foils on each pad via a Reissner-Mindlin-type shell model. Deformations of the rotor are calculated via the Navier-Lamé equations with thermoelastic stresses and centrifugal effects. The temperature of the top foil and the rotor are calculated with the use of heat diffusion equations. The temperature of each lubricating air film is obtained through a 3D energy equation. Film pressures are calculated with the 2D compressible Reynolds equation. Moreover, the surrounding of the bearing and runner disk is part of the thermodynamic model. Results indicate that the thermal bending of the runner disk as well as top foil sagging are key factors in performance reduction. Due to the bump-type understructure, the top foil sagging effect is observed in simulation results. The study at hand showcases the influence of misalignment between the rotor and the bearing on the bearing performance.
Go to article

Authors and Affiliations

Markus Eickhoff
1
ORCID: ORCID
Johannis Triebwasser
1
Bernhard Schweizer
1

  1. Institute of Applied Dynamics, Technical University of Darmstadt, Germany
Download PDF Download RIS Download Bibtex

Abstract

The paper treats of correcting calculation errors of the BLDC motor speed, based on the time elapsed between successive changes in the shaft position sensor signal. The developed method enables correction of errors of the deployment of sensors as well as rotating elements of the observation system of the motor shaft position. The correction algorithm performance was analysed with the aid of a model implemented in Matlab-Simulink environment. After confirming usefulness of the developed method through simulation, its usefulness was verified in real closed-loop feedback systems with a BLDC motor. The results of measurements carried out at the developed laboratory station are presented.
Go to article

Authors and Affiliations

Krzysztof Kolano
Download PDF Download RIS Download Bibtex

Abstract

The present article investigates the dynamic behavior of a fully assembled turbogenerator system influenced by misalignment. In the past, most of the researchers have neglected the foundation flexibility in the turbogenerator systems in their study, to overcome this modelling error a more realistic model of a turbogenerator system has been attempted by considering flexible shafts, flexible coupling, flexible bearings and flexible foundation. Equations of motion for fully assembled turbogenerator system including flexible foundations have been derived by using finite element method. The methodology developed based on least squares technique requires forced response information to quantify the bearing–coupling–foundation dynamic parameters of the system associated with different faults along with residual unbalances. The proposed methodology is tested for the various level of measurement noise and modelling error in the system parameters, i.e., 5% deviation in E (modulus of elasticity) and ρ (density), respectively, for robustness of the algorithm. In a practical sense, the condition analyzed in the present article relates to the identification of misalignment and other dynamic parameters viz. bearing and residual unbalance in a rotor integrated with flexible foundation.
Go to article

Authors and Affiliations

Mohit Lal
Download PDF Download RIS Download Bibtex

Abstract

In rotating machineries, misalignment is considered as the second most major cause of failure after unbalance. In this article, model-based multiple fault identification technique is presented to estimate speed-dependent coupling misalignment and bearing dynamic parameters in addition with speed independent residual unbalances. For brevity in analysis, a simple coupled rotor bearing system is considered and analytical approach is used to develop the identification algorithm. Equations of motion ingeneralized co-ordinates are derived with the help of Lagrange’s equation and least squares fitting approach is used to estimate the speed-dependent fault parameters. Present identification algorithm requires independent sets of forced response data which are generated with the help of different sets of trial unbalances. To avoid/suppress the ill-conditioning of regression equation, independent sets of forced response data are obtained by rotating the rotor in clock-wise and counter clock-wise directions, alternatively. Robustness of algorithm is checked for different levels of measurement noise.
Go to article

Authors and Affiliations

Mohit Lal
Monalisha Satapathy

This page uses 'cookies'. Learn more