Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study of the different engineering materials according to their mechanical and dynamic characteristics has become an area of research interest in recent years. Several studies have verified that the mechanical properties of the material are directly affected by the distribution and size of the particles that compose it. Such is the case of asphalt mixtures. For this reason, different digital tools have been developed in order to be able to detect the structural components of the elements in a precise, clear and efficient manner. In this work, a segmentation model is developed for different types of dense-graded asphalt mixtures with grain sizes from 9.5 mm to 0.0075 mm, using sieve size reconstruction of the laboratory production curve. The laboratory curve is used to validate the particles detection model that uses morphological operations for elements separation. All this with the objective of developing a versatile tool for the analysis and study of pavement structures in a non-destructive test. The results show that the model presented in this work is able to segment elements with an area greater than 0.0324 mm2 and reproduce the sieve size curves of the mixtures with a high percentage of precision.

Go to article

Authors and Affiliations

O.J. Reyes-Ortiz
M. Mejía
J.S. Useche-Castelblanco
Download PDF Download RIS Download Bibtex

Abstract

Manufacturing errors (MEs) are unavoidable in product fabrication. The omnipresence of manufacturing errors (MEs) in product engineering necessitates the development of robust optimization methodologies. In this research, a novel approach based on the morphological operations and interval field (MOIF) theory is proposed to address MEs in the discrete-variable-based topology optimization procedures. On the basis of a methodology for deterministic topology optimization (TO) based on the Min-Cut, MOIF introduces morphological operations to generate geometrical variations, while the dimension of the structuring element is dynamically set by the interval field function’s output. The effectiveness of the proposed approach as a powerful tool for accounting for spatially uneven ME in the TOs has been demonstrated.
Go to article

Authors and Affiliations

Meng Xia
1
Jing Li
1

  1. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, 310027, China

This page uses 'cookies'. Learn more