Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Erbium-doped lead silicate glass has been investigated for near-infrared emission and up-conversion applications. Near-infrared emission due to 4I13/24I15/2 transition of Er3+ is relatively broad (70.5 nm) and long-lived (3.7 ms). Also, up-conversion luminescence spectra of Er3+ ions in lead silicate glass have been examined as a function of temperature. The relative intensities of luminescence bands corresponding to 2H11/24I15/2 and 4S3/24I15/2 transitions of Er3+ were determined with temperature. The fluorescence intensity ratio and temperature sensitivity were calculated. The maximum sensitivity for Er3+ doped lead silicate glass is close to 26.4 × 10−4 K−1 at T = 590 K.

Go to article

Authors and Affiliations

W.A. Pisarski
J. Pisarska
R. Lisiecki
W. Ryba-Romanowski
Download PDF Download RIS Download Bibtex

Abstract

Infrared (IR) reflectography has been used for many years for the detection of underdrawings on panel paintings. Advances in the fields of IR sensors and optics have impelled the wide spread use of IR reflectography by several recognized Art Museums and specialized laboratories around the World. The transparency or opacity of a painting is the result of a complex combination of the optical properties of the painting pigments and the underdrawing material, as well as the type of illumination source and the sensor characteristics. For this reason, recent researches have been directed towards the study of multispectral approaches that could provide simultaneous and complementary information of an artwork. The present work relies on non−simultaneous multispectral inspection using a set of detectors covering from the ultraviolet to the terahertz spectra. It is observed that underdrawings contrast increases with wavelength up to 1700 nm and, then, gradually decreases. In addition, it is shown that IR thermography, i.e., temperature maps or thermograms, could be used simultaneously as an alternative technique for the detection of underdrawings besides the detection of subsurface defects.

Go to article

Authors and Affiliations

A. Bendada
S. Sfarra
C. Ibarra-Castanedo
M. Akhloufi
J.P. Caumes
C. Pradere
J.C. Batsale
Download PDF Download RIS Download Bibtex

Abstract

We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach−Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path−integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.

Go to article

Authors and Affiliations

F. Corral
M. Strojnik
G. Paez
Download PDF Download RIS Download Bibtex

Abstract

Potato from the Solanaceae family is one of the most important crops in the world and its cultivation is common in many places. The average yield of this crop is 20 Mg·ha –1 and it is compatible with climatic conditions in many parts of the world. The experiment studied the possibility of exogenous regulation of the adaptive potential available for four potato cultivars through the use of growth stimulants with different action mechanisms: 24-epibrassinolide (EBL) and chitosan biopolymer (CHT). The results allowed us to establish significant differences in growth parameters, plant height, leaf index, vegetation index, chlorophyll content, and yield structure. Monitoring growth and predicting yields well before harvest are essential to effectively managing potato productivity. Studies have confirmed the empirical relationship between the normalised difference vegetation index ( NDVI) and N-tester vegetation index data at various stages of potato growth with yield data. Statistical linear regression models were used to develop an empirical relationship between the NDVI and N-tester data and yield at different stages of crop growth. The equations have a maximum determination coefficient (R 2) of 0.63 for the N-tester and 0.74 for the NDVI during the flowering phase (BBCH 1 65). NDVI and N-tester vegetation index positively correlated with yield data at all growth stages.
Go to article

Authors and Affiliations

Aleksandra V. Shitikova
1
Adewale A. Abiala
1
Alexander A. Tevchenkov
1
Svetlana S. Bazhenova
1
Nikolay N. Lazarev
1
Evgeniya M. Kurenkova
1

  1. Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, Department of Plant Production and Meadow Ecosystems, Timiryazevskaya St. 49, Moscow, 127422, Russia

This page uses 'cookies'. Learn more