Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The hedonic tone of an environmental odor is a powerful predictor of annoyance. Pertinent field surveys combined with laboratory analysis of landfill, pharmaceutical factories and rubber factories have been conducted, with the purpose of obtaining a behavior curve of the hedonic tone for specific odor emissions, and comparing the annoyance potential and odor persistence of the sources under investigation. The 9-point scale was used to determine the hedonic tone, and the odor concentration was measured using the Triangle Odor Bag Method. The concentration to be presented to panel members comprises a range of 5 or 6 dilution steps which differ by a factor of approximately 3. Using a suitable curve fitting procedure, a line can be fitted through the points obtained in the experiment. Characteristic H values at any concentration can be derived from the hedonic behavior curve. The relationship between the hedonic tone and lgOC conforms to the quadratic polynomial for the three sources. The persistence of odor is expressed as a dose (concentration) response and (intensity) function. According to the rate of change in odor intensity, the pharmaceutical odor is the strongest, followed by the landfill odor, and then the rubber odor. Annoyance potential is calculated by multiplying lgOC with the max hedonic value, meaning that the three sources are sorted as follows: rubber factory>landfill>pharmaceutical factory. This study will further the understanding of the sensory characteristics of different odor source
Go to article

Bibliography

  1. Chaignaud, M., Cariou, S., Poette, J., Fages, M. & Fanlo, J. L. (2014). A new method to evaluate odour annoyance potential. Chemical Engineering Transactions, 40, pp.13-18. DOI:10.3303/CET1440003
  2. Fournel, S., Pelletier, F., Godbout, S., Lagace, R. & Feddes, J.J.R. (2012). Odor emissions, hedonic tones and ammonia emissions from three cage layer housing systems, Biosystems Engineering,112,pp.181-191. DOI: 10.1016/j.biosystemseng.2012.03.010
  3. GB/T 14675(1993). Air Quality–Determination of Odor–Triangle Odor Bag Method, China Environmental Protection Agency Beijing, China. . (in Chinese)
  4. HJ 732(2014).Emission from stationary sources-Sampling of volatile organic compounds-Bags method, China Environmental Protection Agency Beijing, China. . (in Chinese)
  5. HJ 905(2017).Technical specification for environmental monitoring of odor, China Environmental Protection Agency Beijing, China. . (in Chinese)
  6. Idris, N. F., Kamarulzaman, N. H. & Nor, Z. M. O. H. D. (2017). Odor dispersion modelling for raw rubber processing factories. Journal of Rubber Research, 20,4,pp.223-241. DOI:10.1007/BF03449154
  7. Li, J., Li. W., Geng, J., et al. (2020). Prediction model and sensory evaluation of odor pollution in pig farms, Research of Environmental Sciences,32, 1, pp. 88-93. (in Chinese)
  8. Li, J., Zou, K., Li, W., Wang, G. & Yang, W. (2019). Olfactory characterization of typical odorous pollutants part i: relationship between the hedonic tone and odor concentration. Atmosphere, 10, 9,pp. 524-534. DOI: 10.3390/atmos10090524
  9. Li, W. , Li, J., Zhai, Z. , et al.(2018). Chinese population evaluation characteristics of the hedonic tone of two standard odorous substances,The Administration and Technique of Environmental Monitoring,30,1,PP,58-60. (in Chinese)
  10. Miedema, H. M. E., Walpot, J. I., Vos, H., & Steunenberg, C. F. (2000). Exposure-annoyance relationships for odor from industrial sources. Atmospheric Environment, 34,18,pp. 2927-2936. DOI: 0.1016/S1352-2310(99)00524-5
  11. Mueller, B. & Panaskova, J. (2015). Acceptability, perceived intensity, hedonic tone and pd-value - the relationship of these measurement categories. Gefahrstoffe Reinhaltung Der Luft. 75, 10, pp. 421-426. (in German)
  12. Nicell, J. A. (2009). Assessment and regulation of odour impacts. Atmospheric Environment, 43,pp.196-206. DOI: 10.1016/j.atmosenv.2008.09.033
  13. Nimmermark, S. (2011). Influence of odour concentration and individual odour thresholds on the hedonic tone of odour from animal production. Biosystems Engineering, 108, pp. 211-219. DOI:10.1016/j.biosystemseng.2010.12.003
  14. Schauberger, G. & Piringer, M. (2015). Odor impact criteria to avoid annoyance. Austrian Contribution to Vetennary Epodemiology, 8,pp.35-42.
  15. Sucker, K., Both, R., Bischoff, M., Guski, R., Krämer, U. & Winneke, G. (2008). Odor frequency and odor annoyance part ii: dose-response associations and their modification by hedonic tone. International Archives of Occupational & Environmental Health, 81, 6, pp. 683-694.
  16. VDI 3882-2(1997). Olfactometry – Determination of hedonic odor tone, Germany. Verlag des Vereins Deutscher Ingenieure, (1997)
  17. Wang, D., Zhu, X., YANG, X., et al. (2019). Advances and Perspectives in Pollution Characteristics and Prevention and Control Technology of VOCs and Odor Emitted from Pharmaceutical Fermentation Industry, Environmental science,4,pp.1-12. (in Chinese)
  18. Wang, Q., Zuo, X., Xia, M., Xie, H. & Zhu, L. (2019). Field investigation of temporal variation of volatile organic compounds at a landfill in Hangzhou, China. Environmental science and Pollution Research,26,18. DOI: 10.1007/s11356-019-04917-5
  19. Winneke, G. & Kastka, J. (1987). Comparison of odor-annoyance data from different industrial sources: problems and implications. Developments in Toxicology & Environmental ence, 15,3,pp. 129-137.
  20. Yan, F., Li, W., Wang, G., Li, J. & Zhai, Z. (2019). Study on pollution characteristics and sensory of NH3 in industrial site of Tianjin city, Environmental Chemistry,38,11, pp.2505-2509. DOUI: 10.7524/j.issn.0254-6108.2019031401 (in Chinese)
  21. Yan, F., Li.W. F., Han, M., et al. (2018). Sensory characteristics and specific pollutants for typical odor emission sources in China, Research of Environmental Sciences, 31, 9, pp. 1645-1650. (in Chinese)
  22. Yang, W., Zou, K., Li, W., et al. (2018). Odor concentration prediction method and hedonic tone evaluation for sewage treatment plant, Environmental Pollution & Control,40,11,pp. 1306-1309. (in Chinese)
Go to article

Authors and Affiliations

Fengyue Yan
1 2 3
Weifang Li
1 2
Gen Wang
1 2
Jing Geng
1 2
Zhiqiang Lu
1 2
Zengxiu Zhai
1 2 3
Yan Zhang
1 2 3

  1. State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin 300191, China
  2. Tianjin Academy of Eco-environmental Sciences, Tianjin, 300191, China
  3. Tianjin Sinodour Environmental Protection Science and Technology Development Co., Ltd.,Tianjin 300191, China
Download PDF Download RIS Download Bibtex

Abstract

Livestock production is the basis of global food production and it is a serious threat to the environment. Significant environmental pollutants are odors and ammonia (NH3) emitted from livestock buildings. The aim of the study was to determine the concentration and emission factors of ammonia and odors, in the summer season, from a deep-litter fattening house. The research was carried out during summer in a mechanically ventilated fattening piggery located in the Greater Poland Voivodeship. Ammonia concentrations were measured using photoacoustic spectrometer Multi Gas Monitor Innova 1312, and odor concentrations were determined by dynamic olfactometry according to EN 13725:2003 using a TO 8 olfactometer. The NH3 emission factors from the studied piggery, in summer, ranged from 8.53 to 21.71 g·day-1·pig-1, (mean value 12.54±4.89 g·day-1·pig-1). Factors related to kg of body mass were from 0.11 to 0.23 g·day-1·kg b.m.-1 (mean value 0.17±0.06 g·day-1·kg b.m.-1). Odor concentrations in the studied piggery were from 755 to 11775 ouE·m-3 and they were diversified (coefficient of variation 43.8%). The mean value of the momentary odor emission factors was 179.5±78.7 ouE·s-1·pig-1. Factor related to kg of body mass was 2.27±1.71 ouE·s-1·kg b.m.-1. In Poland and many other countries, the litter systems of pigs housing are still very popular. Therefore, there is a need to monitor the pollutant emissions from such buildings to identify the factors influencing the amount of this emission. Another important issue is to verify whether the reduction techniques, giving a measurable effect in laboratory research, bring the same reduction effect in production
Go to article

Bibliography

  1. Bebkiewicz, K., Chłopek, Z., Chojnacka, K., Doberska, A., Kanafa, M., Kargulewicz, I., Olecka, A., Rutkowski, J., Walęzak, M., Waśniewska, S., Zimakowska-Laskowska, M. & Żaczek, M. (2021). Poland’s Informative Inventory Report 2021: Air pollutant emissions in Poland 1990–2019. National Centre for Emissions Management (KOBiZE), Warsaw, Poland. https://cdr.eionet.europa.eu/pl/eu/nec_revised/iir/envyei5sq/IIR_2021_Poland.pdf
  2. Blanes-Vidal, V., Hansen, M.N., Pedersen, S. & Rom, H.B. (2008). Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow, Agriculture, Ecosystems and Environment, 124, pp. 237‒244. DOI:10.1016/j.agee.2007.10.002
  3. Blanes-Vidal, V., Suh, H., Nadimi, E.S., Løfstrøm, P., Ellermann, T., Andersen, H.V. & Schwartz, J. (2012). Residential exposure to outdoor air pollution from livestock operations and perceived annoyance among citizens, Environment International, 40, pp. 44–50. DOI:10.1016/j.envint.2011.11.010
  4. Bokowa, A., Diaz, C., Koziel J. A., McGinley, M., Barclay, J., Schauberger, G., Guillot J.M., Sneath, R., Capelli L., Zorich, V., Izquierdo, C., Bilsen, I., Romain, A.C., del Carmen Cabeza, M., Liu, D., Both, R., Van Belois, H., Higuchi, T. & Wahe, L. (2021. Summary and Overview of the Odour Regulations Worldwide, Atmosphere, 12, pp. 206. DOI:10.3390/atmos12020206
  5. CEN (2003). European Committee for Standardization CEN. Air Quality—Determination of Odour Concentration by Dynamic Olfactometry; EN 13725:2003; CEN: Brussels, Belgium.
  6. Fomunyam, K.G. (2019). Health, mental and emotional impacts of odour producing industrial emissions on man. International Journal of Civil Engineering and Technology, 10, pp. 402–414. Article ID: IJCIET_10_10_039
  7. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. http://www.fao.org/3/i3437e/i3437e.pdf
  8. Guingand, N. & Rugani, A. (2012). Impact of the Reduction of Straw on Ammonia, GHG and Odors Emitted by Fattening Pigs Housed in a Deep-litter System. Ninth International Livestock Environment Symposium. Valencia, Spain, July 8 - 12, ASABE, ILES12-0083.
  9. Guo, H., Dehod, W., Agnew, J., Laguë, C., Feddes, J.R. & Pang, S. (2006). Annual odor emission rate from different types of swine production buildings, Transactions of the ASABE, 49(2), pp. 517−525.
  10. Heber, A., Lim, T., Tao, P., Ni, J. & Schmidt, A. (2008). Effect of Oil Sprinkling in Swine Finishing Barns on Odor Characteristics and Emissions, Chemical Engineering Transactions, 15, pp. 353−361.
  11. Jo, G., Ha, T., Jang, J.N., Hwang, O., Seo, S., Woo, S.E., Lee, S., Kim, D. & Jung, M. (2020). Ammonia Emission Characteristics of a Mechanically Ventilated Swine Finishing Facility in Korea, Atmosphere, 11, pp. 1088. DOI:10.3390/atmos11101088
  12. Margeta, V. & Kralik, G. (2006). Results of zeolit application in fattening of pigs on deep litter, Krmiva, 48, pp. 69-75.
  13. Mielcarek, P., Rzeźnik, W. & Rzeźnik, I. (2014). Ammonia and greenhouse gas emissions from a deep litter farming system for fattening pigs, Problems of Agricultural Engineering, 1(83), pp. 83–90.
  14. Mielcarek, P. & Rzeźnik, W. (2015). Odor Emission Factors from Livestock Production. Polish Journal of Environmental Studies, 24(1), pp. 27–35. DOI: 10.15244/pjoes/29944
  15. Mielcarek, P. & Rzeźnik, W. (2017). The effect of season on the concentration of odours in deep-litter piggery, Journal of Research and Applications in Agricultural Engineering, 62(1), pp. 132−135.
  16. Mielcarek-Bocheńska, P. & Rzeźnik, W. (2019). Ammonia emission from livestock production in Poland and its regional diversity, in the years 2005–2017. Archives of Environmental Protection, 45(4), pp. 114–121. DOI:10.24425/aep.2019.130247
  17. Ngwabie, N.M., Jeppsson, K.H., Nimmermark, S. & Gustafsson, G. (2011). Effects of animal and climate parameters on gas emissions from a barn for fattening pigs, Applied Engineering Agriculture, 27, pp. 1027‒1037. DOI:10.1016/j.atmosenv.2011.08.027
  18. Ni, J.Q., Shi, C., Liu, S., Richert, B.T., Vonderohe, C.E. & Radcliffe, J.S. (2019). Effects of antibiotic-free pig rearing on ammonia emissions from five pairs of swine rooms in a wean-to-finish experiment, Environment International, 131, pp. 104931. DOI:10.1016/j.envint.2019.104931
  19. Nicks, B., Laitat, M., Farnir, F., Vandenheede, M., Désiron, A., Verhaeghe, C. & Canart, B. (2004). Gaseous emissions from deep-litter pens with straw or sawdust for fattening pigs, Animal Science, 78, pp. 99–107. DOI:10.1017/S1357729800053881
  20. Philippe, F.X., Laitat, M., Canart, B., Vandenheede, M. & Nicks, B. (2007). Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep litter, Livestock Science, 111, pp. 144–152. DOI:10.1016/j.livsci.2006.12.012
  21. RM (2010). Regulation of the Minister for Agriculture and Rural Development of 15 February 2010 on the requirements and procedure for keeping livestock species for which protection standards have been laid down in European Union legislation. Dz.U. 2010 nr 56 poz. 344. (in Polish)
  22. Rzeźnik, W., Mielcarek, P. & Rzeźnik, I. (2014). Odour emission from a deep litter farming system for fattening pigs, Problems of Agricultural Engineering, 1(83), pp. 91–98.
  23. Schauberger, G., Lim, T.T., Ni, J.Q., Bundy, D.S., Haymore, B.L., Diehl, C.A., Duggirala, R.K. & Heber, A.J. (2013). Empirical model of odor emission from deep-pit swine finishing barns to derive a standardized odor emission factor, Atmospheric Environment, 66, pp. 84–90. DOI:10.1016/j.atmosenv.2012.05.046
  24. Sousa, F.A., Campos, A.T., Amaral P.I.S, Castro, J.O., Yanagi Junior T., Veloso, A.V. & Cecchin, D. (2014). Aerial environment and deep litter temperature in a swine building, Journal of Animal Behaviour and Biometeorology, 2(4), pp. 109–116. DOI:10.14269/2318-1265/jabb.v2n4p109-116
  25. Viatte, C., Wang, T., Van Damme, M., Dammers, E., Meleux, F., Clarisse, L., Shephard, M.W., Whitburn, S., Coheur, P.F., Cady-Pereira, K. E. & Clerbaux, C. (2020). Atmospheric ammonia variability and link with particulate matter formation: a case study over the Paris area, Atmospheric Chemistry and Physics, 20, pp. 577–596. DOI:10.5194/acp-20-577-2020
  26. Wang, K., Wei, B., Zhu, S. & Ye Z. (2011). Ammonia and odour emitted from deep litter and fully slatted floor systems for growing-finishing pigs, Biosystems Engineering, 109(3), pp. 203–210. DOI:10.1016/j.biosystemseng.2011.04.001
  27. Wei, B., Wang, K., Dai, X., Li, Z. & Luo, H. (2010). Evaluation of Indoor Environmental Conditions of Micro-fermentation Deep Litter Pig Building in Southeast China. 2010 ASABE Annual International Meeting, Pittsburgh, Pennsylvania, USA, June 20 - June 23, ASABE 1009679. DOI:10.13031/2013.29979
  28. Wi, J., Lee, S., Kim, E., Lee, M., Koziel, J.A. & Ahn, H. (2019). Evaluation of Semi-Continuous Pit Manure Recharge System Performance on Mitigation of Ammonia and Hydrogen Sulfide Emissions from a Swine Finishing Barn, Atmosphere, 10, pp. 170. DOI:10.3390/atmos10040170
  29. Yunnen, C., Changshi, X. & Jinxia, N. (2016). Removal of Ammonia Nitrogen from Wastewater Using Modified Activated Sludge, Polish Journal of Environmental Studies, 25(1), pp. 419–425. DOI:10.15244/pjoes/60859
  30. Zhou, X. & Zhang, Q. (2003). Measurements of odour and hydrogen sulfide emissions from swine barns, Canadian Biosystems Engineering, 45, pp. 6.13−6.18.
  31. Zong, C., Li, H. & Zhang, G. (2015). Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems, Agriculture, Ecosystems & Environment, 208, pp 94-105. DOI:10.1016/j.agee.2015.04.031.
Go to article

Authors and Affiliations

Paulina Mielcarek-Bocheńska
1
ORCID: ORCID
Wojciech Rzeźnik
2

  1. Institute of Technology and Life Sciences-National Research Institute, Poland
  2. Poznan University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the preliminary study of n-butanol removal in the adsorption process. The main objective of the research was to asess whether and to what extent biochars produced from selected organic waste materials are suitable for odor removal. Biochars produced from dried sewage sludge and beekeeping waste were tested in the adsorption process. At first, raw materials were pyrolyzed and then modified with a 25% ZnCl2 solution or a 30% H2O2 solution. The adsorption process was conducted using a model gas – the European reference odorant – n-butanol. The output parameter was odor concentration Cod [ouE/m3]. Odor concentration Cod values were obtained using a dynamic olfactometry method on T08 olfactometer. The solid byproducts of pyrolysis of digested sewage sludge and beekeeping waste may be used as adsorbents for the removal of n-butanol in the adsorption process. Adsorption performance of biochar from sewage sludge is better than biochar from beekeeping waste. Additional modification with H2O2 or ZnCl2 increases the efficiency of the process, thus decreasing the required bed height for the elimination of odorant. The results of the studies confirm the findings of other authors that biochars derived from sewage sludge and other organic waste materials may be efficient sorbents in the removal of various substances from water or the air. Other biochars and methods of their activation should be tested. For practical reasons, the next stage of the research should be the determination of the adsorption front height and its migration rate.
Go to article

Bibliography

  1. Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J-K., Yang, J.E. & Ok, Y.S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544. DOI: 10.1016/j.biortech.2012.05.042
  2. Angın, D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128, 593–597. DOI: 10.1016/j.biortech.2012.10.150
  3. Bogusz, A., Oleszczuk, P.& Dobrowolski, R. (2015). Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresource Technology, 196, 540–549. DOI: 10.1016/j.biortech.2015.08.006
  4. Chen, T., Zhang, Y., Wang, H., Lu, W., Zhou, Z., Zhang, Y. & Ren, L. (2014). Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresource Technology, 164, 47–54. DOI: 10.1016/j.biortech.2014.04.048
  5. Chen, X., Jeyaseelan, S. & Graham, N. (2002). Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Management, 22(7), pp. 755–760. DOI: 10.1016/S0956-053X(02)00057-0
  6. Curyło, J. & Rybak, H. (1972). Characteristics of the domestic wax melted from beeswax and the wax extracted from slumgum with trichlorethylene (TRI). Pszczelnicze Zeszyty Naukowe, XVI, pp. 153–162. (in Polish)
  7. De la Guardia, M. & Morales-Rubio, A. (1996). Modern strategies for the rapid determination of metals in sewage sludge. Trends in Analytical Chemistry, 15(8), pp. 311–318. DOI: 10.1016/0165-9936(96)00041-6
  8. Graham, N., Chen, X.G. & Jayaseelan, S. (2001). The potential application of activated carbon from sewage sludge to organic dyes removal. Water Sci Technol, 43(2), pp. 245–252. PMID: 11380186
  9. Guo, C., Zou, J., Yang, J., Wang, K. & Song, S. (2020). Surface characterization of maize-straw-derived biochar and their sorption mechanism for Pb2+ and methylene blue. PLOS ONE, 15(8): e0238105. DOI: 10.1371/journal.pone.0238105
  10. Hvitved-Jacobsen, T., Vollertsen, J., Yongsiri, C., Nielsen, A. & Abdul-Talib, S. (2002). Sewer microbial processes, emissions and impacts. Sewer Processes.
  11. Hwang, Y., Matsuo, T., Hanaki, K. & Suzuki, N. (1995). Identification and quantification of sulfur and nitrogen containing odorous compounds in wastewater. Water Research, 29(2), pp. 711–718. DOI: 10.1016/0043-1354(94)00145-W
  12. Ignatowicz, K. (2008) Sorption process for migration reduction of pesticides from graveyards‎. Archives of Environmental Protection. 34(3)., pp. 143-149.
  13. Ignatowicz, K., Piekarski, J., Skoczko, I. & Piekutin, J. (2016). Analysis of simplified equations of adsorption dynamics of HCH. Desalination and Water Treatment, 57 (3), pp. 1420–1428. DOI: 10.1080/19443994.2014.996011
  14. Kim, W-K., Shim, T., Kim, Y-S., Hyun, S., Ryu, C., Park, Y-K. & Jung, J. (2013). Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource Technology, 138, 266–270. DOI: 10.1016/j.biortech.2013.03.186
  15. Lach, J. & Ociepa, E. (2003). Effect of high-temperature modification of activated carbon on the sorption of Cr(VI) anions and Cr(III) cations from aqueous solutions. Ochrona Środowiska, 3 (25), pp. 57–60. (in Polish)
  16. Latosińska, J. (2014). The analysis of heavy metals mobility from sewage sludge from wastewater treatment plants in Olsztyn and Sitkówka-Nowiny. Inżynieria i Ochrona Środowiska, 17(2), pp. 243–253. (in Polish)
  17. Lee, Y., Park, J., Ryu, C., Gang, K.S., Yang, W., Park, Y-K., Jung, J. & Hyun, S. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology, 148, 196–201. DOI: 10.1016/j.biortech.2013.08.135
  18. Lu, H., Zhang, W., Wang, S., Zhuang, L., Yang, Y. & Qiu, R. (2013). Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 102, 137–143. DOI: 10.1016/j.jaap.2013.03.004
  19. Milik, J., Pasela, R., Szymczak, M. & Chalamoński, M. (2016). Evaluation of the Physico-chemical Composition of Sludge from Municipal Sewage Treatment Plant. Rocznik Ochrona Środowiska, 18, pp. 579–590. (in Polish)
  20. Norouzi, H., Jafari, D. & Esfandyari, M. (2020). Study on a new adsorbent for biosorption of cadmium ion from aqueous solution by activated carbon prepared from Ricinus communis. Desal. Water Treat., 191, pp. 140–152. DOI:10.5004/dwt.2020.25702
  21. Piecuch, T., Kowalczyk, A., Dąbrowski, T., Dąbrowski, J. & Andriyevska, L. (2015). Reduction of Odorous Noxiousness of Sewage Treatment Plant in Tychowo. Rocznik Ochrona Środowiska, 17, pp. 646–663. (in Polish)
  22. Piekarski, J. (2009). Numerical modeling of the filtration and sorption process. Monografia, Wydawnictwo Politechniki Koszalińskiej. (in Polish)
  23. Piekarski, J., Dąbrowski, T. & Ignatowicz, K. (2021). Effect of bed height on efficiency of adsorption of odors from sewage sludge using modified biochars from organic waste materials as an adsorbent. Desal. Water Treat., 218, 252–259. DOI: 10.5004/dwt.2021.26975
  24. PN-EN 13725:2007 "Air quality. Determination of odor concentration by dynamic olfactometry". (in Polish)
  25. Puchlik, M., Ignatowicz, K. & Dabrowski, W. (2015). Influence of bio- preparation on wastewater purification process in constructed wetlands. Journal of Ecological Engineering, 16 (1), pp. 159–163. DOI: 10.12911/22998993/602
  26. Rauf, A., Mahmud, T. & Ashraf, M. (2020). Sorption studies on removal of Cd2+ from the aqueous solution using fruit-peels of Litchi chinensis Sonn. Desal. Water Treat., 187, pp. 277–286. DOI: 10.5004/dwt.2020.25414
  27. Semkiw, P., Skubida, P., Jeziorski, K. & Pioś, A. (2018). The beekeeping sector in Poland. Instytut Ogrodnictwa, Zakład Pszczelarstwa w Puławach. (in Polish)
  28. Shaaban, A.,Se, S-M., Dimin, M.F., Juoi, J.M., Husin, M.H.M. & Mitan, N.M.M. (2014). Influence of heating temperature and holding time on biochars derived from rubber wood sawdust via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 107, 31–39. DOI: 10.1016/j.jaap.2014.01.021
  29. Sówka, I. (2011). Methods of identification of odour gases emitted from industrial plants. Oficyna Wydawnicza Politechniki Wrocławskiej. (in Polish)
  30. Sówka, I., Miller, U., Skrętowicz, M., Nych, A. & Zwoździak, J. (2013). The Conditions and Requirements Necessary for the Proper Functioning of the Olfactometric Laboratory. Rocznik Ochrona Środowiska, 15, pp. 1207–1215. (in Polish)
  31. Szostek, M., Kaniuczak, J., Hajduk, E., Stanek-Tarkowska, J., Jasiński, T., Niemiec, W. & Smusz, R. (2018). Effect of sewage sludge on the yield and energy value of the aboveground biomass of Jerusalem artichoke (Helianthus tuberosus L.). Archives of Environmental Protection, 44(3), pp. 42–50. DOI: 10.24425/aep.2018.122285
  32. Tang, Y., Samrat, Alam, Md., Konhauser, K.O., Alessi, D.S., Xu, S., Tian, W. & Liu, Y. (2019). Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater. Journal of Cleaner Production, 209, pp. 927–936. DOI: 10.1016/j.jclepro.2018.10.268
  33. Titova, J. & Baltrėnaitė, E. (2020). Physical and Chemical Properties of Biochar Produced from Sewage Sludge Compost and Plants Biomass, Fertilized with that Compost, Important for Soil Improvement. Waste Biomass Valor. DOI: 10.1007/s12649-020-01272-2
  34. Wen, Q., Li, C., Cai, Z., Zhang, W., Gao, H., Chen, L., Zeng, G., Shu, X. & Zhao, Y. (2011). Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresource Technology, 102(2), pp. 942–947. DOI: 10.1016/j.biortech.2010.09.042
  35. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste, Archives of Environmental Protection, 46(3), pp. 60–68. DOI: 10.24425/aep.2020.134536
  36. Włodarczyk, E., Próba, M. & Wolny, L. (2014). Comparison of Test Results for Stabilized Sewage Sludge Derived from Storage Yard and Drying Hall. Inżynieria i Ochrona Środowiska, 17( 3), pp. 473–481. (in Polish)
  37. Zhang, F-S., Nriagu, J.O. & Itoh, H. (2005). Mercury removal from water using activated carbons derived from organic sewage sludge. Water Research, 39(2–3), pp. 389–395. DOI: 10.1016/j.watres.2004.09.027
Go to article

Authors and Affiliations

Jacek Piekarski
1
Tomasz Dąbrowski
1
Janusz Dąbrowski
1
Katarzyna Ignatowicz
2

  1. Koszalin University of Technology
  2. Bialystok University of Technology
Download PDF Download RIS Download Bibtex

Abstract

Waste management faces more and more serious challenges, especially given the growing amount of municipal waste generated in Poland and the resulting environmental impact. One of the significant environmental aspects of waste management is the emission of odorants and odors. Taking into account the odor problem, the majority of municipal waste generated is being collected as mixed waste (62% of municipal waste), which by weight contains approximately 32.7% of kitchen and garden waste. These organic fractions are mainly responsible for the emission of odor and odorants. Those substances can be emitted at every stage: from the waste collection at residential waste bins, through transport, waste storage, and transfer stations, up to various respective treatment facilities, i.e., mechanical-biological waste treatment plants, landfills, or waste incineration plants. The gathered data during the study showed that it is necessary to increase the share of different waste management methods, i.e., recycling, composting, or fermentation processes rather than landfilling to meet all necessary regulations and to fulfill provisions of the waste hierarchy. One of the actions indicated in the legal solutions is expansion, retrofitting, and construction of new sorting plants, anaerobic digestion plants, composting plants, and increase in thermal treatment capacity. Variety of different processes that could emit odors and a diversity of different odor-generating substances released from particular waste management steps should be taken into consideration when building new facilities which are suitable for waste treatment. The overall aim of the work was to characterize and summarize available knowledge about waste management system in Poland and to gather information about odor-generating substances emitted from different waste management steps and facilities, which could be a potential source of information for preparing legal solutions to reduce possible odor nuisance form broadly understood waste management.
Go to article

Bibliography

  1. Aatamila, M., Verkasalo, P.K., Korhonen, M.J., Viluksela, M.K., Pasanen, K., Tiittanen, P. & Nevalainen, A. (2010). Odor annoyance near waste treatment centers: A population-based study in Finland. J. Air Waste Manag. Assoc., 60, pp. 412–418. DOI:10.3155/1047-3289.60.4.412.
  2. Almarcha, D., Almarcha, M., Nadal, S. & Caixach, J. (2012). Comparison of the depuration efficiency for voc and other odoriferous compounds in conventional and advanced biofilters in the abatement of odour emissions from municipal waste treatment plants. Chem. Eng. Trans., 30, pp. 259–264. DOI:10.3303/CET1230044.
  3. Alwaeli, M. (2015). An overview of municipal solid waste management in Poland. The current situation, problems and challenges. Environ. Prot. Eng., 41, pp. 181–193. DOI:10.5277/epel50414.
  4. Bax, C., Sironi, S. & Capelli, L. (2020). How can odors be measured? An overview of methods and their applications. Atmosphere (Basel)., 11. DOI:10.3390/atmos11010092.
  5. Beylot, A., Hochar, A., Michel, P., Descat, M., Ménard, Y. & Villeneuve, J. (2018). Municipal Solid Waste Incineration in France: An Overview of Air Pollution Control Techniques, Emissions, and Energy Efficiency. J. Ind. Ecol., 22, pp. 1016–1026. DOI:10.1111/jiec.12701.
  6. den Boer, E. Banaszkiewicz, K. & Sebastian M. (2018). Badania ilości i składu odpadów komunalnych w cyklu rocznym pochodzących z terenu gminy Wrocław. Raporty Wydziału Inżynierii Środowiska Politechniki Wrocławskiej. Ser. SPR nr 30, 226 (in Polish).
  7. den Boer, E., Jedrczak, A., Kowalski, Z., Kulczycka, J. & Szpadt, R. (2010). A review of municipal solid waste composition and quantities in Poland. Waste Manag., 30, pp. 369–377. DOI:10.1016/j.wasman.2009.09.018.
  8. Brattoli, M., de Gennaro, G., de Pinto, V., Loiotile, A.D., Lovascio, S. & Penza, M. (2011). Odour detection methods: Olfactometry and chemical sensors. Sensors, 11, pp. 5290–5322. DOI:10.3390/s110505290.
  9. Bruno, P., Caselli, M., de Gennaro, G., Solito, M. & Tutino, M. (2007). Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers. Waste Manag., 27, pp. 539–544. DOI:10.1016/j.wasman.2006.03.006.
  10. Burnley, S.J. (2007). A review of municipal solid waste composition in the United Kingdom. Waste Manag., 27, pp. 1274–1285. DOI:10.1016/j.wasman.2006.06.018.
  11. Butrymowicz T. (2018). Badania odpadów w Jarocinie. Centralne Laboratorium Instytutu Inżynierii Środowiska, Uniwersytet Zielonogórski., unpublished (in Polish).
  12. Cangialosi, F., Intini, G., Liberti, L., Notarnicola, M. & Stellacci, P. (2008). Health risk assessment of air emissions from a municipal solid waste incineration plant - A case study. Waste Manag., 28, pp. 885–895. DOI:10.1016/j.wasman.2007.05.006.
  13. Capelli, L. & Sironi, S. (2018). Combination of field inspection and dispersion modelling to estimate odour emissions from an Italian landfill. Atmos. Environ., 191, pp. 273–290. DOI:10.1016/j.atmosenv.2018.08.007.
  14. Capelli, L., Sironi, S. & del Rosso, R. (2013a). Odor sampling: Techniques and strategies for the estimation of odor emission rates from different source types. Sensors, 13, pp. 938–955. DOI:10.3390/s130100938.
  15. Capelli, L., Sironi, S., Del Rosso, R. & Guillot, J.M. (2013b). Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ., 79, pp. 731–743. DOI:10.1016/j.atmosenv.2013.07.029.
  16. Chang, H., Tan, H., Zhao, Y., Wang, Y., Wang, X., Li, Y., Lu, W. & Wang, H. (2019). Statistical correlations on the emissions of volatile odorous compounds from the transfer stage of municipal solid waste. Waste Manag., 87, pp. 701–708. DOI:10.1016/j.wasman.2019.03.014.
  17. Chen, Y.C. (2018). Effects of urbanization on municipal solid waste composition. Waste Manag., 79, pp. 828–836. DOI:10.1016/j.wasman.2018.04.017.
  18. Cheng, Z., Zhu, S., Chen, X., Wang, L., Lou, Z. & Feng, L. (2020). Variations and environmental impacts of odor emissions along the waste stream. J. Hazard. Mater., 384, 120912. DOI:10.1016/j.jhazmat.2019.120912.
  19. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N. & Feng, L. (2019). The identification and health risk assessment of odor emissions from waste landfilling and composting. Sci. Total Environ., 649, pp. 1038–1044. DOI:10.1016/j.scitotenv.2018.08.230.
  20. Colón, J., Alvarez, C., Vinot, M., Lafuente, F.J., Ponsá, S., Sánchez, A. & Gabriel, D. (2017). Characterization of odorous compounds and odor load in indoor air of modern complex MBT facilities. Chem. Eng. J., 313, pp. 1311–1319. DOI:10.1016/j.cej.2016.11.026.
  21. Conti, C., Guarino, M. & Bacenetti, J. (2020). Measurements techniques and models to assess odor annoyance: A review. Environ. Int., 134, 105261. DOI:10.1016/j.envint.2019.105261.
  22. Curren, J., Hallis, S.A., Snyder, C. (Cher) L. & Suffet, I. (Mel) H. (2016). Identification and quantification of nuisance odors at a trash transfer station. Waste Manag., 58, pp. 52–61. DOI:10.1016/j.wasman.2016.09.021.
  23. Çetin Doğruparmak, Ş., Pekey, H. & Arslanbaş, D. (2018). Odor dispersion modeling with CALPUFF: Case study of a waste and residue treatment incineration and utilization plant in Kocaeli, Turkey. Environ. Forensics, 19, pp. 79–86. DOI:10.1080/15275922.2017.1408160.
  24. Damgaard, A., Riber, C., Fruergaard, T., Hulgaard, T. & Christensen, T.H. (2010) Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Manag., 30, pp. 1244–1250. DOI:10.1016/j.wasman.2010.03.025.
  25. Defoer, N., De Bo, I., Van Langenhove, H., Dewulf, J. & Van Elst, T. (2002) Gas chromatography-mass spectrometry as a tool for estimating odour concentrations of biofilter effluents at aerobic composting and rendering plants. J. Chromatogr. A, 970, pp. 259–273. DOI:10.1016/S0021-9673(02)00654-4.
  26. Di Foggia, G., Beccarello, M. (2021) Market structure of urban waste treatment and disposal: Empirical evidence from the italian industry. Sustain., 13. DOI:10.3390/su13137412.
  27. Di, Y., Liu, J., Liu, J., Liu, S. & Yan, L. (2013). Characteristic analysis for odor gas emitted from food waste anaerobic fermentation in the pretreatment workshop. J. Air Waste Manag. Assoc., 63, pp. 1173–1181. DOI:10.1080/10962247.2013.807318.
  28. Directive 2008/98/EC of The European Parliment and of The Council of 19 November 2008 on waste and repealing certain Directives.
  29. Duan, Z., Scheutz, C. & Kjeldsen, P. (2021). Trace gas emissions from municipal solid waste landfills: A review. Waste Manag., 119, pp. 39–62. DOI:10.1016/j.wasman.2020.09.015.
  30. European Comission Eurostat Available online: https://ec.europa.eu/eurostat/web/main/data/database.
  31. European Union Council Directive 1999/31/EC on the landfill, 1999.
  32. European Union Directive 2018/851 amending Directive 2008/98/EC on waste.
  33. Fang, J.J., Yang, N., Cen, D.Y., Shao, L.M. & He, P.J. (2012). Odor compounds from different sources of landfill: Characterization and source identification. Waste Manag., 32, pp. 1401–1410. DOI:10.1016/j.wasman.2012.02.013.
  34. Fang, J., Zhang, H., Yang, N., Shao, L. & He, P. (2013). Gaseous pollutants emitted from a mechanical biological treatment plant for municipal solid waste: Odor assessment and photochemical reactivity. J. Air Waste Manag. Assoc., 63, pp. 1287–1297. DOI:10.1080/10962247.2013.822439.
  35. Fei, F., Wen, Z., Huang, S. & De Clercq, D. (2018). Mechanical biological treatment of municipal solid waste: Energy efficiency, environmental impact and economic feasibility analysis. J. Clean. Prod., 178, pp. 731–739. DOI:10.1016/j.jclepro.2018.01.060.
  36. Forastiere, F., Badaloni, C., De Hoogh, K., Von Kraus, M.K., Martuzzi, M., Mitis, F., Palkovicova, L., Porta, D., Preiss, P. & Ranzi, A. (2011). Health impact assessment of waste management facilities in three European countries. Environ. Heal. A Glob. Access Sci. Source, 10, pp. 1–13. DOI:10.1186/1476-069X-10-53.
  37. Giusti, L. (2009). A review of waste management practices and their impact on human health. Waste Manag., 29, pp. 2227–2239. DOI:10.1016/j.wasman.2009.03.028.
  38. Guo, H., Duan, Z., Zhao, Y., Liu, Y., Mustafa, M.F., Lu, W. & Wang, H. (2017). Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China. Environ. Sci. Pollut. Res., 24, pp. 18383–18391. DOI:10.1007/s11356-017-9376-8.
  39. He, P., Du, W., Xu, X., Zhang, H., Shao, L. & Lü, F. (2020). Effect of biochemical composition on odor emission potential of biowaste during aerobic biodegradation. Sci. Total Environ., 727, 138285. DOI:10.1016/j.scitotenv.2020.138285.
  40. Heyer, K.U., Hupe, K. & Stegmann, R. (2013). Methane emissions from MBT landfills. Waste Manag., 33, pp. 1853–1860. DOI:10.1016/j.wasman.2013.05.012.
  41. Hou, J.Q., Li, M.X., Wei, Z.M., Xi, B.D., Jia, X., Zhu, C.W. & Liu, D.M. (2013). Critical components of odors and VOCs in mechanical biological treatment process of MSW. Adv. Mater. Res., 647, pp. 438–449. DOI:10.4028/www.scientific.net/AMR.647.438.
  42. Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A. & Malamakis, A. (2010). Waste biomass-to-energy supply chain management: A critical synthesis. Waste Manag., 30, pp. 1860–1870. DOI:10.1016/j.wasman.2010.02.030.
  43. Internet source, website accessed on 15.07.2021, available online https://www.portalsamorzadowy.pl/gospodarka-komunalna/spalarnie-w-polsce-gdzie-dzialaja-kto-buduje-a-kto-ma-je-w-planie,253488.html.
  44. Jędrczak, A., den Boer, E., Kamińska-Boerak, J., Kozłowska B., Szpadt, R., Mierzwiński A., Krzyśków, A. & Kundegórski, M. (2020). Analysis of waste management costs - assessment of investment needs in the country in the field of waste prevention and waste management in connection with the new EU financial perspective 2021-2027, IOŚ-PIB, NFOŚiGW, Warszawa (in Polish) (unpublished report). Available online: https://odpady.net.pl/wp-content/uploads/2021
  45. Jędrczak, A., den Boer, E., Kamińska-Borak, J., Szpadt, R., Krzyśków, A. & Wielgosiński, G. (2021). Analysis of the possibilities and barriers to the management of plastic waste from separate collection of municipal waste, and the issues of circular economy, IOŚ-PIB, NFOŚiGW, Warszawa (in Polish) (unpublished report). Available online: https://ios.edu.pl/aktualnosci/analiza-mozliwosci-i-barier-zagospodarowania-odpadow-z-tworzyw-sztucznych-a-goz/
  46. Jiang, J., Wang, F., Wang, J. & Li, J. (2021). Ammonia and hydrogen sulphide odour emissions from different areas of a landfill in Hangzhou, China. Waste Manag. Res., 39, pp. 360–367. DOI:10.1177/0734242X20960225.
  47. Jońca, J., Pawnuk, M., Arsen, A. & Sówka, I. (2022) Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants—A Review. Sensors, 22, 1510. https://DOI:10.3390/s22041510
  48. Ko, J.H., Xu, Q. & Jang, Y.C. (2015). Emissions and Control of Hydrogen Sulfide at Landfills: A Review. Crit. Rev. Environ. Sci. Technol., 45, pp. 2043–2083. DOI:10.1080/10643389.2015.1010427.
  49. Kulig, A. & Szylak-Szydlowski, M. (2016). Assessment of range of olfactory impact of plant to mechanical-biological treatment of municipal waste. Chem. Eng. Trans., 54, pp. 247–252. DOI:10.3303/CET1654042.
  50. Le Bihan, Y., Loranger-King, D., Turgeon, N., Pouliot, N., Moreau, N., Deschênes, D. & Rivard, G. (2020). Use of alternative cover materials to control surface emissions (H2s and vocs) at an engineered landfill. Detritus, 10, pp. 118–126. DOI:10.31025/2611-4135/2020.13909.
  51. Liu, Y., Lu, W., Wang, H., Gao, X. & Huang, Q. (2019). Improved impact assessment of odorous compounds from landfills using Monte Carlo simulation. Sci. Total Environ., 648, pp. 805–810. DOI:10.1016/j.scitotenv.2018.08.213.
  52. Liu, Y., Yang, H. & Lu, W. (2020). VOCs released from municipal solid waste at the initial decomposition stage: Emission characteristics and an odor impact assessment. J. Environ. Sci. (China), 98, pp. 143–150. DOI:10.1016/j.jes.2020.05.009.
  53. Long, Y., Zhang, S., Fang, Y., Du, Y., Liu, W., Fang, C. & Shen, D. (2017). Dimethyl sulfide emission behavior from landfill site with air and water control. Biodegradation, 28, pp. 327–335. DOI:10.1007/s10532-017-9799-4.
  54. Lou, Z., Wang, M., Zhao, Y. & Huang, R. (2015). The contribution of biowaste disposal to odor emission from landfills. J. Air Waste Manag. Assoc., 65, pp. 479–484. DOI:10.1080/10962247.2014.1002870.
  55. Lucernoni, F., Tapparo, F., Capelli, L. & Sironi, S. (2016). Evaluation of an Odour Emission Factor (OEF) to estimate odour emissions from landfill surfaces. Atmos. Environ., 144, pp. 87–99. DOI:10.1016/j.atmosenv.2016.08.064.
  56. Maurer, D.L., Bragdon, A.M., Short, B.C., Ahn, H. & Koziel, J.A. (2018). Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Arch. Environ. Prot., 44, pp. 100–107. DOI:10.24425/119699.
  57. Meišutovič-Akhtarieva, M. & Marčiulaitienė, E. (2017). Research on odours emitted from non-hazardous waste landfill using dynamic olfactometry. 10th Int. Conf. Environ. Eng. ICEE 2017, pp. 27–28. DOI:10.3846/enviro.2017.034.
  58. Monzambe, G.M., Mpofu, K. & Daniyan, I.A. (2021). Optimal location of landfills and transfer stations for municipal solid waste in developing countries using non-linear programming. Sustain. Futur., 3, 100046. DOI:10.1016/j.sftr.2021.100046.
  59. Mustafa, M.F., Liu, Y., Duan, Z., Guo, H., Xu, S., Wang, H. & Lu, W. (2017). Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J. Hazard. Mater., 327, pp. 35–43. DOI:10.1016/j.jhazmat.2016.11.046.
  60. Naddeo, V., Zarra, T., Oliva, G., Chiavola, A., Vivarelli, A. & Cardona, G. (2018). Odour impact assessment of a large municipal solid waste landfill under different working phases. Glob. Nest J., 20, pp. 654–658. DOI:10.30955/gnj.002770.
  61. Oleniacz, R. (2014). Impact of the municipal solid waste incineration plant in Warsaw on air quality. Geomatics Environ. Eng., 8, 25. DOI:10.7494/geom.2014.8.4.25.
  62. Palmiotto, M., Fattore, E., Paiano, V., Celeste, G., Colombo, A. & Davoli, E. (2014). Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ. Int., 68, pp. 16–24. DOI:10.1016/j.envint.2014.03.004.
  63. Pawnuk, M., Grzelka, A., Miller, U. & Sówka, I. (2020). Prevention and reduction of odour nuisance in waste management in the context of the current legal and technological solutions. J. Ecol. Eng., 21, pp. 34–41. DOI:10.12911/22998993/125455.
  64. Polish Committee for Standardization. Polish Standard PN-EN 13725:2007: Air Quality—Determination of Odour Concentration by Dynamic Olfactometry, Polish Committee for Standardization: Warsaw, Poland, 2007.
  65. Ragazzi, M., Tosi, P., Rada, E.C., Torretta, V. & Schiavon, M. (2014). Effluents from MBT plants: Plasma techniques for the treatment of VOCs. Waste Manag., 34, pp. 2400–2406. DOI:10.1016/j.wasman.2014.07.026.
  66. Sánchez-Monedero, M.A., Fernández-Hernández, A., Higashikawa, F.S. & Cayuela, M.L. (2018). Relationships between emitted volatile organic compounds and their concentration in the pile during municipal solid waste composting. Waste Manag., 79, pp. 179–187. DOI:10.1016/j.wasman.2018.07.041.
  67. Scaglia, B., Orzi, V., Artola, A., Font, X., Davoli, E., Sanchez, A. & Adani, F. (2011). Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresour. Technol., 102, pp. 4638–4645. DOI:10.1016/j.biortech.2011.01.016.
  68. Schiavon, M., Martini, L.M., Corrà, C., Scapinello, M., Coller, G., Tosi, P. & Ragazzi, M. (2017). Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices. Environ. Pollut., 231, pp. 845–853. DOI:10.1016/j.envpol.2017.08.096.
  69. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Manag., 25, pp. 928–939. DOI:10.1016/j.wasman.2005.07.006.
  70. Shi, X., Zheng, G., Shao, Z. & Gao, D. (2020). Effect of source-classified and mixed collection from residential household waste bins on the emission characteristics of volatile organic compounds. Sci. Total Environ., 707, 135478. DOI:10.1016/j.scitotenv.2019.135478.
  71. Sironi, S., Capelli, L., Céntola, P. & Del Rosso, R. (2007). Odour emissions from MSW composting process steps. Int. J. Environ. Technol. Manag., 7, pp. 304–316. DOI:10.1504/IJETM.2007.015148.
  72. Sironi, S., Capelli, L., Céntola, P., Del Rosso, R. & Il Grande, M. (2006). Odour emission factors for the prediction of odour emissions from plants for the mechanical and biological treatment of MSW. Atmos. Environ., 40, pp. 7632–7643. DOI:10.1016/j.atmosenv.2006.06.052.
  73. Sonibare, O.O., Adeniran, J.A. & Bello, I.S. (2019). Landfill air and odour emissions from an integrated waste management facility. J. Environ. Heal. Sci. Eng., 17, pp. 13–28. DOI:10.1007/s40201-018-00322-1.
  74. Statistic Poland Environment 2020. Stat. Anal. 2020, pp. 154–161.
  75. Statistic Poland Local Data Bank (2021) Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/temat.
  76. Szulczyński, B., Wasilewski, T., Wojnowski, W., Majchrzak, T., Dymerski, T., Namiésnik, J. & Gębicki, J. (2017). Different ways to apply a measurement instrument of E-nose type to evaluate ambient air quality with respect to odour nuisance in a vicinity of municipal processing plants. Sensors (Switzerland), 17. DOI:10.3390/s17112671.
  77. Tan, H., Zhao, Y., Ling, Y., Wang, Y. & Wang, X. (2017). Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste. Waste Manag., 68, pp. 677–687. DOI:10.1016/j.wasman.2017.07.015.
  78. Tagliaferri, F., Invernizzi, M., Sironi, S. & Capelli, L. (2020). Influence of modelling choices on the results of landfill odour dispersion. Detritus, 12, pp. 92–99. DOI:10.31025/2611-4135/2020.13998.
  79. The Act of 14 December 2012 on waste (Journal of Laws of 2020, item 797) (in Polish).
  80. Tyrała K. (2019. Conducting research on the quantity and morphological composition of municipal waste in Bydgoszcz. Final report. Collective analysis of the entire study, R.O.T. RECYCLING ODPADY TECHNOLOGIE S.C. K, Gliwice, (in Polish).
  81. VDI 3882 PART 1 Olfactometry, determination of odour intensity, Verein Deutscher Ingenieure, Germany, 1992.
  82. VDI 3880: Olfactometry. Static Sampling, Verein Deutscher Ingenieure, Germany, 2011.
  83. Wang, Y., Li, L., Qiu, Z., Yang, K., Han, Y., Chai, F., Li, P. & Wang, Y. (2021). Trace volatile compounds in the air of domestic waste landfill site: Identification, olfactory effect and cancer risk. Chemosphere, 272, 129582. DOI:10.1016/j.chemosphere.2021.129582.
  84. Wiśniewska, M. (2020a). Analysis of Potential Exposure to Components of Municipal Solid Waste in a Mechanical Biological Treatment. Proceedings, 51, 10. DOI:10.3390/proceedings2020051010.
  85. Wiśniewska, M. (2020b) Methods of assessing odour emissions from biogas plants processing municipal waste. J. Ecol. Eng., 21, pp. 140–147. DOI:10.12911/22998993/113039.
  86. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2021). The use of chemical sensors to monitor odour emissions at municipal waste biogas plants. Appl. Sci., 11. DOI:10.3390/app11093916.
  87. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020a). Odour emissions of municipal waste biogas plants-impact of technological factors, air temperature and humidity. Appl. Sci., 10. DOI:10.3390/app10031093.
  88. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2020b). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Arch. Environ. Prot., 46, pp. 60–68. DOI:10.24425/aep.2020.134536.
  89. Wiśniewska, M., Kulig, A. & Lelicińska-Serafin, K. (2019). Comparative analysis of preliminary identification and characteristic of odour sources in biogas plants processing municipal waste in Poland. SN Appl. Sci., 1, pp. 1–10. DOI:10.1007/s42452-019-0534-0.
  90. Wiśniewska, M. & Szyłak-Szydłowski, M. (2021). The air and sewage pollutants from biological waste treatment. Processes, 9, pp. 1–13. DOI:10.3390/pr9020250.
  91. Wu, C., Shu, M., Liu, X., Sang, Y., Cai, H., Qu, C. & Liu, J. (2020). Characterization of the volatile compounds emitted from municipal solid waste and identification of the key volatile pollutants. Waste Manag., 103, pp. 314–322. DOI:10.1016/j.wasman.2019.12.043.
  92. Xu, A., Chang, H., Zhao, Y., Tan, H., Wang, Y., Zhang, Y., Lu, W. & Wang, H. (2020). Dispersion simulation of odorous compounds from waste collection vehicles: Mobile point source simulation with ModOdor. Sci. Total Environ., 711, 135109. DOI:10.1016/j.scitotenv.2019.135109.
  93. Yao, X.Z., Ma, R.C., Li, H.J., Wang, C., Zhang, C., Yin, S.S., Wu, D., He, X.Y., Wang, J. & Zhan, L.T. (2019). Assessment of the major odor contributors and health risks of volatile compounds in three disposal technologies for municipal solid waste. Waste Manag., 91, pp. 128–138. DOI:10.1016/j.wasman.2019.05.009.
  94. Zemanek, J., Wozniak, A. & Malinowski, M. (2011). The role and place of solid waste transfer station in the waste management system. Polish Acad. Sci. Cracow Branch 2011, 11, pp. 5–13.
  95. Zhang, Y., Ning, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G. & Shang, X. (2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Manag., 126, pp. 771–780. DOI:10.1016/j.wasman.2021.03.055.
  96. Zhang, H., Schuchardt, F., Li, G., Yang, J. & Yang, Q. (2013). Emission of volatile sulfur compounds during composting of municipal solid waste (MSW). Waste Manag., 33, pp. 957–963. DOI:10.1016/j.wasman.2012.11.008.
  97. Zhao, Y., Lu, W. & Wang, H. (2015). Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution. J. Hazard. Mater., 300, pp. 695–701. DOI:10.1016/j.jhazmat.2015.07.081.
  98. Zielnica J. & Cudakiewicz P. (2016). Morphological studies of municipal waste generated in the Szczecin City Commune 2015-2016, SWECO (in Polish).
Go to article

Authors and Affiliations

Marcin Pawnuk
1
ORCID: ORCID
Bartosz Szulczyński
2
ORCID: ORCID
Emilia den Boer
1
ORCID: ORCID
Izabela Sówka
1
ORCID: ORCID

  1. Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Poland
  2. Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Evaluations of odour intensity of the air polluted with cyclohexane (A), cyclohexanone (B) and cyclohexane with admixtures of cyclohexanone (mixtures MI, M2 and M3; x8 = 0.14; 0.05 and 0.02 respectively) were made. Empirical parameters of psychophysical equations (Weber-Fechner' and Stevens') were determined. Total concentrations of the mixtures were within the range C = 1500-3500 ppm. The interaction constant av= 115-132° was estimated for the mixtures. Verification of known models of odour interaction led to the conclusion that possible application of the models for prediction of odour intensity of the air polluted with mixtures of cyclohexane and hexane is limited.
Go to article

Authors and Affiliations

Joanna Kośmider
Małgorzata Zamelczyk-Pajewska
Bartosz Wyszyński
Download PDF Download RIS Download Bibtex

Abstract

This article presents the validity, advisability and purposefulness of using a gas sensor matrix to monitor air deodorization processes carried out in a peat-perlite-polyurethane foam-packed biotrickling filter. The aim of the conducted research was to control the effectiveness of air stream purification from vapors of hydrophobic compounds, i.e., n-hexane and cyclohexane. The effectiveness of hydrophobic n-hexane and cyclohexane removal from air was evaluated using gas chromatography as the reference method and a custom-built gas sensor matrix consisting of seven commercially available sensors. The influence of inlet loading (IL) of n-hexane and cyclohexane on the biotrickling filtration performance was investigated. The prepared sensor matrix was calibrated with use of two statistical techniques: Multiple Linear Regression (MLR) and Principal Component Regression (PCR). The developed mathematical models allowed us to correlate the multidimensional signal from the sensor array with the concentration of the removed substances. The results based on gas chromatography analyses indicated that the elimination efficiencies of n-hexane and cyclohexane reached about 40 and 30 g m-3 h-1, respectively. The results obtained using a gas sensor matrix revealed that it was possible not only to determine concentration reliably of investigated hydrophobic volatile organic compounds in the gas samples, but also to obtain results of a similar high level of quality as the chromatographic ones. A gas-sensor matrix proposed in this work can be used for on-line real-time monitoring of biofiltration process performance of air polluted with n-hexane and cyclohexane.
Go to article

Bibliography

  1. Arnold, M., Reittu, A., von Wright, A., Martikainen, P.J. & Suihko, M-L. (1997). Bacterial degradation of styrene in waste gases using a peat filter. Applied Microbiology and Biotechnology, 48, pp.738-744. DOI:10.1007/s002530051126
  2. Brattoli, M., De Gannero, G., De Pinto, V., Loiotile, A.D., Lovascio, S. & Penza, M. (2011). Odour detection methods: olfactometry and chemical sensors. Sensors, 11, 5, pp. 5290-5322. DOI:10.3390/s110505290
  3. Buliner, E.A., Koziel, J.A., Cai, L. & Wright, D. (2012). Characterization of livestock odors using steel plates solid-phase microextraction, and multidimensional gas chromatography-mass spectrometry-olfactometry. Journal of the Air & Waste Management Association, 56, 10, pp. 1391-1403. DOI:10.1080/10473289.2006.10464547
  4. Cabeza, I.O., Lopez, R., Giraldez, I., Stuetz, R.M. & Diaz, M.J. (2013). Biofiltration of α-piene vapours using municipal solid waste (MSW) – Pruning residues (P) composts as packing materials. Chemical Engineering Journal, 233, pp. 149-158. DOI:10.1016/j.cej.2013.08.032
  5. Chen, Y., Wang, X., He, S., Zhu, S. & Shen, S. (2016). The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H_2 S from air. Journal of Environmental Management, 165, 1, pp. 11-16. DOI:10.1016/j.jenvman.2015.09.008
  6. Cheng, Y., He, H., Yang, C., Yan, Z., Zeng, G. & Qian, H. (2016a). Effects of anionic surfactant on n-hexane removal in biofilters. Chemosphere, 150, pp. 248-253. DOI:10.1016/j.chemosphere.2016.02.027
  7. Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H. & Yu, G. (2016b). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnology Advances, 34, 6, pp. 1091-1102. DOI:10.1016/j.biotechadv.2016.06.007
  8. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N. & Feng, L. (2019). The identification and health risk assessment of odor emissions from waste landfilling and composting. Science of The Total Environment, 649, pp. 1038-1044. DOI:10.1016/j.scitotenv.2018.08.230
  9. Chou, M-S. & Shiu, W-Z. (2011). Bioconversion of Methylamine in Biofilters. Journal of the Air & Waste Management Association, 47, 1, pp. 58-65. DOI:10.1080/10473289.1997.10464408
  10. Fang, J-J., Yang, N., Cen, D-Y., Shao, L-M. & He, P-J. (2012). Odor compounds from different sources of landfill: Characterization and source identification. Waste Management, 32, 7, pp. 1401-1410. DOI:10.1016/j.wasman.2012.02.013
  11. Giungato, P., Gilo, A.D., Palmisani, J., Marzocca, A., Mazzone, A., Brattoli, M., Giua, R. & de Gennaro, G. (2018). Synergistic approaches for odor active compounds monitoring and identification: State of the art, integration, limits and potentialities of analytical and sensorial techniques. Trends in Analytical Chemistry, 107, pp. 116-129. DOI:10.1016/j.trac.2018.07.019
  12. Liang, Z., Wang, J., Zhang, Y., Han, C., Ma, S., Chen, J., Li, G. & An, T. (2020). Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. Journal of Cleaner Production, 253, pp. 120019. DOI:10.1016/j.jclepro.2020.120019
  13. Lopez, R., Cabeza, I.O., Giraldez, I. & Diaz, M.J. (2011). Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresource Technology, 102, 17, pp. 7984-7993. DOI:10.1016/j.biortech.2011.05.085
  14. Marycz, M., Rodriguez, Y., Gębicki, J. & Munoz, R. (2022). Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii. Chemosphere, 306, pp. 135608. DOI:10.1016/j.chemosphere.2022.135608
  15. Maurer, D., Bragdon, A., Short, B., Ahn, H. & Koziel, J.A. (2018). Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Archives of Environmental Protection, 44, 2, pp. 100-107. DOI:10.24425/119699
  16. Miller, U., Sówka, I. & Adamiak, W. (2020). The use of surfactant from the Tween group in toluene biofiltration. Archives of Environmental Protection, 46, 2, pp. 53-57. DOI:10.24425/aep.2020.133474
  17. Munoz, R., Sivert, E., Parcsi, G., Lebrero, R., Wang, X., Suffet, I.H. & Stuetz, R.M. (2010). Monitoring techniques for odour abatement assessment. Water Research, 44, 18, pp. 5129-5149. DOI:10.1016/j.watres.2010.06.013
  18. Nagata, E., Yoshio, Y. & Takeuchi, N. (2003). Measurement of Odor Threshold by Triangular Odor Bag Method. Odor measurement review, 118, pp. 118-127.
  19. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka, I. (2022). Preliminary analysis of the state of municipal waste management technology in Poland along with the identification of waste treatment processes in terms of odor emissions. Archives of Environmental Protection, 48, 3, pp. 3-20. DOI:10.24425/aep.2022.142685
  20. Rolewicz-Kalińska, A., Lelicińska-Serafin, K. & Manczarski, P. (2021). Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process. Chemical Engineering Research and Design, 165, pp. 69-80. DOI:10.1016/j.cherd.2020.10.017
  21. Rybarczyk, P. (2022). Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes, 10, 12, pp. 2531. DOI:10.3390/pr10122531
  22. Rybarczyk, P., Marycz, M., Szulczyński, B., Brillowska-Dąbrowska, A., Rybarczyk, A. & Gębicki, J. (2021). Removal of cyclohexane and ethanol from air in biotrickling filters inoculated with Candida albicans and Candida subhashii. Archives of Environmental Protection, 47, 1, pp. 26-34. DOI. 10.24425/aep.2021.136445
  23. Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2020). Simultaneous removal of hexane and ethanol from air in biotrickling filter – process performance and monitoring using electronic-nose. Sustainability, 12, 1, pp. 387. DOI:10.3390/su12010387
  24. Rybarczyk, P., Szulczyński, B., Gospodarek, M. & Gębicki, J. (2019). Effects of n-butanol presence, inlet loading, empty residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapours from air. Chemical Papers, 74, pp. 1039-1047. DOI:10.1007/s11696-019-00943-2
  25. Sabilla, S.I., Sarno, R. & Siswantoro, J. (2017). Estimating Gas Concentration using Artificial Neural Network for Electronic Nose. Procedia Computer Science, 124, pp. 181-188. DOI:10.1016/j.procs.2017.12.145
  26. Salamanca, D., Dobslaw, D. & Engesser, K-H. (2017). Removal of cyclohexane gaseous emissions using a biotrickling filter system. Chemosphere, 176, pp. 97-107. DOI:10.1016/j.chemosphere.2017.02.078
  27. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Management, 25, 9, pp. 928-939. DOI:10.1016/j.wasman.2005.07.006
  28. Sohn, J.H., Dunlop, M., Hudson, N., Kim, T.I. & Yoo, Y.H. (2009). Non-specific conducting polimer-based array capable of monitoring odour emissions from a Biofiltration system in a piggery building. Sensors and Actuators B: Chemical, 135, 2, pp. 455-464. DOI:10.1016/j.snb.2008.10.007
  29. Szulczyński, B., Gębicki, J. & Namieśnik, J. (2018a). Monitoring and efficiency assessment of biofilter air deodorization using electronic nose prototype. Chemical Papers, 72, pp. 527-532. DOI:10.1007/s11696-017-0310-9
  30. Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2018b). Monitoring of n-butanol vapours biofiltration process using an electronic nose combined with calibration models. Monatshefte fur Chemie, 149, pp. 1693-1699. DOI:10.1007/s00706-018-2243-6
  31. Szulczyński, B., Rybarczyk, P., Gospodarek, M. & Gębicki, J. (2019). Biotrickling filtration of n-butanol vapours: process monitoring using electronic nose and artificial neural network. Monatshefte fur Chemie, 150, pp. 1667-1673. DOI 10.1007/s00706-019-02456-w
  32. Vergara-Fernandez, A., Revah, S., Moreno-Casas, P. & Scott, F. (2018). Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling. Biotechnology Advances, 36, 4, pp. 1079-1093. DOI:10.1016/j.biotechadv.2018.03.008
  33. Wiśniewska, M., Kulig, A. & Lelecińska-Serafin, K. (2020). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Archives of Environmental Protection, 46, 3, pp. 60-68. DOI:10.24425/aep.2020.134536
  34. Wu, X., Lin, Y., Wang, Y., Wu, S., Li, X. & Yang C. (2022). Enhanced Removal of Hydrophobic Short-Chain n-Alkanes from Gas Streams in Biotrickling Filters in Presence of Surfactant. Environmental Science & Technology, 56, 14, pp. 10349-10360. DOI:10.1021/acs.est.2c02022
  35. Wysocka, I., Gębicki, J. & Namieśnik, J. (2019). Technologies for deodorization of malodorous gases. Environmental Science and Pollution Research, 26, pp. 9409-9434, DOI:10.1007/s11356-019-04195-1
  36. Yang, C., Chen, H., Zeng, G., Yu, G. & Luo, S. (2010). Biomass accumulation and control strategies in gas biofiltration. Biotechnology Advances, 28, 4, pp. 531-540, DOI:10.1016/j.biotechadv.2010.04.002
  37. Yu, G., Wang, G., Wang, S., Yang, C., Chen, H., Zhu, Y., Yu, L., Li, J. & Kazemian, H. (2021). Performance promotion and its mechanism for n-hexane removal in a lab-scale biotrickling filter with reticular polyurethane sponge under intermittent spraying mode. Process Safety and Environmental Protection, 152, pp. 654-662. DOI:10.1016/j.psep.2021.06.029
  38. Zarra, T., Reiser, M., Naddeo, V., Belgiorno, V. & Kranert, M. (2014). Odor Emissions Characterization from Wastewater Treatment Plants by Different Measurement Methods. Chemical Engineering Transaction, 40, pp. 37-42. DOI:10.3303/CET1440007
  39. Zhang, S., Cai. L., Koziel, J.A., Hoff, S.J., Schmidt, D.R., Clanton, C.J., Jacobson, L.D., Parker, D.B. & Heber, A.J. (2010). Field air sampling and simultaneous chemical and sensory analysis of livestock odorants with sorbent tubes and GC-MS/olfactometry. Sensors and Actuators B: Chemical, 146, 2, pp. 427-432. DOI:10.1016/j.snb.2009.11.028
  40. Zhang, Y., Ning, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G. & Shang, X. (2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Management, 126, pp. 771-780. DOI:10.1016/j.wasman.2021.03.055
  41. Arnold, M., Reittu, A., von Wright, A., Martikainen, P.J. & Suihko, M-L. (1997). Bacterial degradation of styrene in waste gases using a peat filter. Applied Microbiology and Biotechnology, 48, pp.738-744. DOI:10.1007/s002530051126
  42. Brattoli, M., De Gannero, G., De Pinto, V., Loiotile, A.D., Lovascio, S. & Penza, M. (2011). Odour detection methods: olfactometry and chemical sensors. Sensors, 11, 5, pp. 5290-5322. DOI:10.3390/s110505290
  43. Buliner, E.A., Koziel, J.A., Cai, L. & Wright, D. (2012). Characterization of livestock odors using steel plates solid-phase microextraction, and multidimensional gas chromatography-mass spectrometry-olfactometry. Journal of the Air & Waste Management Association, 56, 10, pp. 1391-1403. DOI:10.1080/10473289.2006.10464547
  44. Cabeza, I.O., Lopez, R., Giraldez, I., Stuetz, R.M. & Diaz, M.J. (2013). Biofiltration of α-piene vapours using municipal solid waste (MSW) – Pruning residues (P) composts as packing materials. Chemical Engineering Journal, 233, pp. 149-158. DOI:10.1016/j.cej.2013.08.032
  45. Chen, Y., Wang, X., He, S., Zhu, S. & Shen, S. (2016). The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H_2 S from air. Journal of Environmental Management, 165, 1, pp. 11-16. DOI:10.1016/j.jenvman.2015.09.008
  46. Cheng, Y., He, H., Yang, C., Yan, Z., Zeng, G. & Qian, H. (2016a). Effects of anionic surfactant on n-hexane removal in biofilters. Chemosphere, 150, pp. 248-253. DOI:10.1016/j.chemosphere.2016.02.027
  47. Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H. & Yu, G. (2016b). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnology Advances, 34, 6, pp. 1091-1102. DOI:10.1016/j.biotechadv.2016.06.007
  48. Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N. & Feng, L. (2019). The identification and health risk assessment of odor emissions from waste landfilling and composting. Science of The Total Environment, 649, pp. 1038-1044. DOI:10.1016/j.scitotenv.2018.08.230
  49. Chou, M-S. & Shiu, W-Z. (2011). Bioconversion of Methylamine in Biofilters. Journal of the Air & Waste Management Association, 47, 1, pp. 58-65. DOI:10.1080/10473289.1997.10464408
  50. Fang, J-J., Yang, N., Cen, D-Y., Shao, L-M. & He, P-J. (2012). Odor compounds from different sources of landfill: Characterization and source identification. Waste Management, 32, 7, pp. 1401-1410. DOI:10.1016/j.wasman.2012.02.013
  51. Giungato, P., Gilo, A.D., Palmisani, J., Marzocca, A., Mazzone, A., Brattoli, M., Giua, R. & de Gennaro, G. (2018). Synergistic approaches for odor active compounds monitoring and identification: State of the art, integration, limits and potentialities of analytical and sensorial techniques. Trends in Analytical Chemistry, 107, pp. 116-129. DOI:10.1016/j.trac.2018.07.019
  52. Liang, Z., Wang, J., Zhang, Y., Han, C., Ma, S., Chen, J., Li, G. & An, T. (2020). Removal of volatile organic compounds (VOCs) emitted from a textile dyeing wastewater treatment plant and the attenuation of respiratory health risks using a pilot-scale biofilter. Journal of Cleaner Production, 253, pp. 120019. DOI:10.1016/j.jclepro.2020.120019
  53. Lopez, R., Cabeza, I.O., Giraldez, I. & Diaz, M.J. (2011). Biofiltration of composting gases using different municipal solid waste-pruning residue composts: Monitoring by using an electronic nose. Bioresource Technology, 102, 17, pp. 7984-7993. DOI:10.1016/j.biortech.2011.05.085
  54. Marycz, M., Rodriguez, Y., Gębicki, J. & Munoz, R. (2022). Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii. Chemosphere, 306, pp. 135608. DOI:10.1016/j.chemosphere.2022.135608
  55. Maurer, D., Bragdon, A., Short, B., Ahn, H. & Koziel, J.A. (2018). Improving environmental odor measurements: Comparison of lab-based standard method and portable odor measurement technology. Archives of Environmental Protection, 44, 2, pp. 100-107. DOI:10.24425/119699
  56. Miller, U., Sówka, I. & Adamiak, W. (2020). The use of surfactant from the Tween group in toluene biofiltration. Archives of Environmental Protection, 46, 2, pp. 53-57. DOI:10.24425/aep.2020.133474
  57. Munoz, R., Sivert, E., Parcsi, G., Lebrero, R., Wang, X., Suffet, I.H. & Stuetz, R.M. (2010). Monitoring techniques for odour abatement assessment. Water Research, 44, 18, pp. 5129-5149. DOI:10.1016/j.watres.2010.06.013
  58. Nagata, E., Yoshio, Y. & Takeuchi, N. (2003). Measurement of Odor Threshold by Triangular Odor Bag Method. Odor measurement review, 118, pp. 118-127.
  59. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka, I. (2022). Preliminary analysis of the state of municipal waste management technology in Poland along with the identification of waste treatment processes in terms of odor emissions. Archives of Environmental Protection, 48, 3, pp. 3-20. DOI:10.24425/aep.2022.142685
  60. Rolewicz-Kalińska, A., Lelicińska-Serafin, K. & Manczarski, P. (2021). Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process. Chemical Engineering Research and Design, 165, pp. 69-80. DOI:10.1016/j.cherd.2020.10.017
  61. Rybarczyk, P. (2022). Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes, 10, 12, pp. 2531. DOI:10.3390/pr10122531
  62. Rybarczyk, P., Marycz, M., Szulczyński, B., Brillowska-Dąbrowska, A., Rybarczyk, A. & Gębicki, J. (2021). Removal of cyclohexane and ethanol from air in biotrickling filters inoculated with Candida albicans and Candida subhashii. Archives of Environmental Protection, 47, 1, pp. 26-34. DOI. 10.24425/aep.2021.136445
  63. Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2020). Simultaneous removal of hexane and ethanol from air in biotrickling filter – process performance and monitoring using electronic-nose. Sustainability, 12, 1, pp. 387. DOI:10.3390/su12010387
  64. Rybarczyk, P., Szulczyński, B., Gospodarek, M. & Gębicki, J. (2019). Effects of n-butanol presence, inlet loading, empty residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapours from air. Chemical Papers, 74, pp. 1039-1047. DOI:10.1007/s11696-019-00943-2
  65. Sabilla, S.I., Sarno, R. & Siswantoro, J. (2017). Estimating Gas Concentration using Artificial Neural Network for Electronic Nose. Procedia Computer Science, 124, pp. 181-188. DOI:10.1016/j.procs.2017.12.145
  66. Salamanca, D., Dobslaw, D. & Engesser, K-H. (2017). Removal of cyclohexane gaseous emissions using a biotrickling filter system. Chemosphere, 176, pp. 97-107. DOI:10.1016/j.chemosphere.2017.02.078
  67. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Management, 25, 9, pp. 928-939. DOI:10.1016/j.wasman.2005.07.006
  68. Sohn, J.H., Dunlop, M., Hudson, N., Kim, T.I. & Yoo, Y.H. (2009). Non-specific conducting polimer-based array capable of monitoring odour emissions from a Biofiltration system in a piggery building. Sensors and Actuators B: Chemical, 135, 2, pp. 455-464. DOI:10.1016/j.snb.2008.10.007
  69. Szulczyński, B., Gębicki, J. & Namieśnik, J. (2018a). Monitoring and efficiency assessment of biofilter air deodorization using electronic nose prototype. Chemical Papers, 72, pp. 527-532. DOI:10.1007/s11696-017-0310-9
  70. Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2018b). Monitoring of n-butanol vapours biofiltration process using an electronic nose combined with calibration models. Monatshefte fur Chemie, 149, pp. 1693-1699. DOI:10.1007/s00706-018-2243-6
  71. Szulczyński, B., Rybarczyk, P., Gospodarek, M. & Gębicki, J. (2019). Biotrickling filtration of n-butanol vapours: process monitoring using electronic nose and artificial neural network. Monatshefte fur Chemie, 150, pp. 1667-1673. DOI 10.1007/s00706-019-02456-w
  72. Vergara-Fernandez, A., Revah, S., Moreno-Casas, P. & Scott, F. (2018). Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling. Biotechnology Advances, 36, 4, pp. 1079-1093. DOI:10.1016/j.biotechadv.2018.03.008
  73. Wiśniewska, M., Kulig, A. & Lelecińska-Serafin, K. (2020). Olfactometric testing as a method for assessing odour nuisance of biogas plants processing municipal waste. Archives of Environmental Protection, 46, 3, pp. 60-68. DOI:10.24425/aep.2020.134536
  74. Wu, X., Lin, Y., Wang, Y., Wu, S., Li, X. & Yang C. (2022). Enhanced Removal of Hydrophobic Short-Chain n-Alkanes from Gas Streams in Biotrickling Filters in Presence of Surfactant. Environmental Science & Technology, 56, 14, pp. 10349-10360. DOI:10.1021/acs.est.2c02022
  75. Wysocka, I., Gębicki, J. & Namieśnik, J. (2019). Technologies for deodorization of malodorous gases. Environmental Science and Pollution Research, 26, pp. 9409-9434, DOI:10.1007/s11356-019-04195-1
  76. Yang, C., Chen, H., Zeng, G., Yu, G. & Luo, S. (2010). Biomass accumulation and control strategies in gas biofiltration. Biotechnology Advances, 28, 4, pp. 531-540, DOI:10.1016/j.biotechadv.2010.04.002
  77. Yu, G., Wang, G., Wang, S., Yang, C., Chen, H., Zhu, Y., Yu, L., Li, J. & Kazemian, H. (2021). Performance promotion and its mechanism for n-hexane removal in a lab-scale biotrickling filter with reticular polyurethane sponge under intermittent spraying mode. Process Safety and Environmental Protection, 152, pp. 654-662. DOI:10.1016/j.psep.2021.06.029
  78. Zarra, T., Reiser, M., Naddeo, V., Belgiorno, V. & Kranert, M. (2014). Odor Emissions Characterization from Wastewater Treatment Plants by Different Measurement Methods. Chemical Engineering Transaction, 40, pp. 37-42. DOI:10.3303/CET1440007
  79. Zhang, S., Cai. L., Koziel, J.A., Hoff, S.J., Schmidt, D.R., Clanton, C.J., Jacobson, L.D., Parker, D.B. & Heber, A.J. (2010). Field air sampling and simultaneous chemical and sensory analysis of livestock odorants with sorbent tubes and GC-MS/olfactometry. Sensors and Actuators B: Chemical, 146, 2, pp. 427-432. DOI:10.1016/j.snb.2009.11.028
  80. Zhang, Y., Ning, X., Li, Y., Wang, J., Cui, H., Meng, J., Teng, C., Wang, G. & Shang, X. (2021). Impact assessment of odor nuisance, health risk and variation originating from the landfill surface. Waste Management, 126, pp. 771-780. DOI:10.1016/j.wasman.2021.03.055
Go to article

Authors and Affiliations

Dominik Dobrzyniewski
1
ORCID: ORCID
Bartosz Szulczyński
1
ORCID: ORCID
Piotr Rybarczyk
1
ORCID: ORCID
Jacek Gębicki
1
ORCID: ORCID

  1. Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland

This page uses 'cookies'. Learn more