Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 29
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In vibration control with piezoceramics, a high coupling of the piezoelement with the structure is desired. A high coupling improves the damping performance of passive techniques like shunt damping. The coupling can be influenced by a the material properties of the piezoceramics, but also by the placement within the structure and the size of the transducer. Detailed knowlegde about the vibration behavior of the structure is required for this. This paper presents an in-depth analysis of the optimal shape of piezoelectric elements. General results for one-dimensional, but inhomogeneos strain distribution are provided. These results are applied to the case of a longitudinal transducer and a bending bimorph. It is obtained that for maximum coupling, only a certain fracture of the volume should be made of piezoelectric material&
Go to article

Authors and Affiliations

Marcus Neubauer
Download PDF Download RIS Download Bibtex

Abstract

An optimized method of vibration Energy Harvesting is based on a step-down transformer that regulates the power flow from the piezoelectric element to the desired electronic load. Taking into account parameters of the whole system, the “optimal” voltage gain the piezoelectric transformer can be determined where the harvested power is maximized for the actual level of mechanical excitation. Consequently the piezoelectric transformers can be used to boost up the conversion of mechanical strain into electrical power with considerable potential in Energy Harvesting applications. Nowadays however, the most important factor is usage of lead free material for its construction. Additional desired parameters of such ceramics include high value of piezoelectric coefficients, low dielectric losses and reasonable power density. This work for first time proposes a lead free K0.5Na0.5NbO3 (KNN) material implementation for stack type of piezoelectric transformer that is designed for load efficiency optimization of vibration energy harvester.

Go to article

Authors and Affiliations

L. Kozielski
K. Feliksik
B. Wodecka-Duś
D. Szalbot
S. Tutu
Download PDF Download RIS Download Bibtex

Abstract

Beams with rectangular cross-section, with large length-to-width ratio, can be excited to torsional vibrations. If the piezoelectric elements are mounted to the beam in pairs at the same cross-section with two separated elements positioned on the same side of the beam, and the voltages applied to them are in the opposite phase, they produce twisting moments which can be applied to reduce the torsional vibrations. Results of FEM simulations are presented and analysed in the paper. All analyses are performed for a steel free-clamped beam. The piezoelectric elements made of PZT material are mounted in pairs on one side of the beam. The analyses are done for separated natural modes.
Go to article

Authors and Affiliations

Elżbieta Augustyn
Marek S. Kozień
Michał Pracik
Download PDF Download RIS Download Bibtex

Abstract

In this work the design aspects of a piezoelectric-based resonance ceramic pressure sensor made using low-temperature co-fired ceramic (LTCC) technology and designed for high-temperature applications is presented. The basic pressure-sensor structure consists of a circular, edge-clamped, deformable diaphragm that is bonded to a ring, which is part of the rigid ceramic structure. The resonance pressure sensor has an additional element – a piezoelectric actuator – for stimulating oscillation of the diaphragm in the resonance-frequency mode. The natural resonance frequency is dependent on the diaphragm construction (i.e., its materials and geometry) and on the actuator. This resonance frequency then changes due to the static deflection of the diaphragm caused by the applied pressure. The frequency shift is used as the output signal of the piezoelectric resonance pressure sensor and makes it possible to measure the static pressure. The characteristics of the pressure sensor also depend on the temperature, i.e., the temperature affects both the ceramic structure (its material and geometry) and the properties of the actuator. This work is focused on the ceramic structure, while the actuator will be investigated later.
Go to article

Authors and Affiliations

Darko Belavič
Andraž Bradeško
Marina Santo Zarnik
Tadej Rojac
Download PDF Download RIS Download Bibtex

Abstract

The paper presents application of a modified, symmetrical Bouc-Wen model to simulate the mechanical behaviour of high-frequency piezoelectric actuators (PAs). In order to identify parameters of the model, a two-step algorithm was developed. In its first stage, the mechanical parameters were identified by taking into account their bilinear variability and using a square input voltage waveform. In the second step, the hysteresis parameters were determined based on a periodic excitation. Additionally, in order to reduce the influence of measurement errors in determination of selected derivatives the continuum wavelet transform (CWT) and translation-rotation transformation (TRT) methods were applied. The results proved that the modified symmetrical Bouc-Wen model is able to describe the mechanical behaviour of PAs across a wide frequency range.

Go to article

Authors and Affiliations

Rafał Kędra
Magdalena Rucka
Download PDF Download RIS Download Bibtex

Abstract

Effectiveness of operation of a weapon stabilization system is largely dependent on the choice of a sensor, i.e. an accelerometer. The paper identifies and examines fundamental errors of piezoelectric accelerometers and offers measures for their reduction. Errors of a weapon stabilizer piezoelectric sensor have been calculated. The instrumental measurement error does not exceed 0.1 × 10−5 m/s2. The errors caused by the method of attachment to the base, different noise sources and zero point drift can be mitigated by the design features of piezoelectric sensors used in weapon stabilizers.

Go to article

Authors and Affiliations

Igor Korobiichuk
Download PDF Download RIS Download Bibtex

Abstract

Using intelligent materials and sensors to monitor the safety of concrete structures is a hot topic in the field of civil engineering. In order to realize the omni-directional monitoring of concrete structural damage, the authors of this paper designed and fabricated an embedded annular piezoelectric ultrasonic sensor using the annular piezoelectric lead zirconate titanate (PZT) ceramic as a sensing element and epoxy resin as the matching and the backing layers. The influence of different matching and backing layers thickness on the acoustic characteristic parameters of the sensor were studied. The results show that the resonant frequency corresponding to the axial mode of annular piezoelectric ceramics moves toward the high frequency direction with the decrease of the height of piezoelectric ceramics, and the radial vibration mode increases as well as the impedance peak. With the thickness of the backing layer increases from 1 mm to 2 mm, the radial resolution of the annular piezoelectric ultrasonic sensor is enhanced, the pulse width is reduced by 39% comparing with the sensors which backing layer is 1 mm, and the head wave amplitude and −3 dB bandwidth are increased by 61% and 66%, respectively. When the matching layer thickness is 3 mm, the sensor has the highest amplitude response of 269 mV and higher sensitivity.
Go to article

Authors and Affiliations

Haoran Li
1
Yan Hu
2
Laibo Li
1
Dongyu Xu
2 3

  1. Shandong Provincial Key Lab of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China
  2. School of Civil Engineering, Central South University, Changsha 410075, PR China
  3. School of Civil Engineering and Architecture, Linyi University, Linyi 276000, PR China
Download PDF Download RIS Download Bibtex

Abstract

A gyroscopic rotor exposed to unbalance is studied and controlled with an active piezoelectrical bearing. A model is required in order to design a suited controller. Due to the lack of related publications utilizing piezoelectrical bearings and obtaining a modal model purely exploiting experimental modal analysis, this paper reveals a method to receive a modal model of a gyroscopic rotor system with an active piezoelectrical bearing. The properties of the retrieved model are then incorporated into the design of an originally model-free control approach for unbalance vibration elimination, which consists of a simple feedback control and an adaptive feedforward control. After the discussion on the limitations of the model-free control, a modified controller using the priorly identified modal model is implemented on an elementary rotor test-rig comparing its performance to the original model-free controller.
Go to article

Bibliography

  1.  A.B. Palazzolo, R.R. Lin, R.M. Alexander, A.F. Kascak, and J. Montague, “Test and theory for piezoelectric actuator-active vibration control of rotating machinery,” J. Vib. Acoust., vol.  113, no. 2, 1991. doi: 10.1115/1.2930165.
  2.  R. Köhler, C. Kaletsch, M. Marszolek, and S. Rinderknecht, “Active vibration damping of engine rotor considering piezo electric self heating effects,” in International Symposium on Air Breathing Engines 2011 (ISABE 2011), Gothenburg, Sep. 2011.
  3.  M. Borsdorf, R.S. Schittenhelm, and S. Rinderknecht, “Vibration reduction of a turbofan engine high pressure rotor with piezoelectric stack actuators,” in Proceedings of the International Symposium on Air Breathing Engines 2013 (ISABE 2013), Busan, 2013.
  4.  R.C. Simões, V. Steffen, J. Der Hagopian, and J. Mahfoud, “Modal active vibration control of a rotor using piezoelectric stack actuators,” Vib. Control, vol. 13, no. 1, pp. 45–64, Jan. 2007. doi: 10.1177/1077546306070227.
  5.  B. Riemann, M.A. Sehr, R.S. Schittenhelm, and S. Rinderknecht, “Robust control of flexible high-speed rotors via mixed uncertainties,” in 2013 European Control Conference (ECC). Zürich: IEEE, Jul. 2013, pp. 2343–2350. doi: 10.23919/ ECC.2013.6669786.
  6.  F.B. Becker, M.A. Sehr, and S. Rinderknecht, “Vibration isolation for parameter-varying rotor systems using piezoelectric actuators and gain-scheduled control,” J. Intell. Mater. Syst. Struct., vol. 28, no. 16, pp. 2286–2297, Sep. 2017. doi: 10.1177/1045389X17689933.
  7.  M. Li, T.C. Lim, and W.S. Shepard, “Modeling active vibration control of a geared rotor system,” Smart Mater. Struct., vol.  13, no. 3, pp. 449–458, Jun. 2004. doi: 10.1088/0964- 1726/13/3/001.
  8.  Y. Suzuki and Y. Kagawa, “Vibration control and sinusoidal external force estimation of a flexible shaft using piezoelectric actuators,” Smart Mater. Struct., vol. 21, no. 12, Dec. 2012. doi: 10.1088/0964-1726/21/12/125006.
  9.  O. Lindenborn, B. Hasch, D. Peters, and R. Nordmann, “Vibration reduction and isolation of a rotor in an actively supported bearing using piezoelectric actuators and the FXLMS algorithm,” in 9th International Conference on Vibrations in Rotating Machinery, Exeter, Sep. 2008.
  10.  R.S. Schittenhelm, S. Bevern, and B. Riemann, “Aktive Schwingungsminderung an einem gyroskopiebehafteten Rotorsystem mittels des FxLMS-Algorithmus,” in SIRM 2013 – 10. Internationale Tagung Schwingungen in rotierenden Maschinen, Berlin, Deutschland, Feb. 2013.
  11.  S. Heindel, P.C. Müller, and S. Rinderknecht, “Unbalance and resonance elimination with active bearings on general rotors,” J. Sound Vib., vol. 431, pp. 422–440, Sep. 2018. doi: 10.1016/j.jsv.2017.07.048.
  12.  B. Vervisch, K. Stockman, and M. Loccufier, “A modal model for the experimental prediction of the stability threshold speed,” Appl. Math. Modell., vol. 60, pp. 320–332, Aug. 2018. doi: 10.1016/j.apm.2018.03.020.
  13.  S. Kuo and D. Morgan, “Active noise control: a tutorial review,” Proc. IEEE, vol. 87, no. 6, pp. 943–975, Jun. 1999. doi: 10.1109/5.763310.
  14.  J. Jiang and Y. Li, “Review of active noise control techniques with emphasis on sound quality enhancement,” Appl. Acoust., vol. 136, pp. 139–148, Jul. 2018. doi: 10.1016/j.apacoust. 2018.02.021.
  15.  L.P. de Oliveira, B. Stallaert, K. Janssens, H. Van der Auweraer, P. Sas, and W. Desmet, “NEX-LMS: A novel adaptive control scheme for harmonic sound quality control,” Mech. Syst. Signal Process., vol. 24, no. 6, pp. 1727–1738, Aug. 2010. doi: 10.1016/j.ymssp.2010.01.004.
  16.  S.S. Narayan, A.M. Peterson, and M.J. Narasimha, “Transform domain LMS algorithm,” IEEE Trans. Acoust. Speech Signal Process., vol. 31, no. 3, pp. 609–615, Jun. 1983.
  17.  J. Jungblut, D.F. Plöger, P. Zech, and S. Rinderknecht, “Order tracking based least mean squares algorithm,” in Proceedings of 8th IFAC Symposium on Mechatronic Systems MECHATRONICS 2019, Vienna, Sep. 2019, pp. 465–470.
  18.  J. Jungblut, C. Fischer, and S. Rinderknecht, “Supplementary data: Active vibration control of a gyroscopic rotor using experimental modal analysis,” 2020. [Online]. doi: 10.48328/tudatalib-572.
Go to article

Authors and Affiliations

Jens Jungblut
1
ORCID: ORCID
Christian Fischer
1
ORCID: ORCID
Stephan Rinderknecht
1
ORCID: ORCID

  1. Institute for Mechatronic Systems, Technical University Darmstadt, 64287, Germany
Download PDF Download RIS Download Bibtex

Abstract

Structural vibration damping via piezoelectric shunt circuits has received a great deal of attention recently as they are light, easy to use and provide for good vibration damping performance. This study investigates vibration damping of a clamped-free beam under harmonic excitations in the steady state. The damping control strategy utilises the piezoelectric properties of PZT materials and a shunt circuit consisting of series RLC elements in parallel configuration. The analysis was made for the first mode frequency and, at the same time, for the four resonance frequencies.
Go to article

Authors and Affiliations

Roman Filipek
Jerzy Wiciak
Download PDF Download RIS Download Bibtex

Abstract

The present work focuses on a first study for a piezoelectric harvesting system, finalized to the obtaining of electrical energy from the kinetic energy of rainy precipitation, a renewable energy source not really considered until now. The system, after the realization, can be collocated on the roof of an house, configuring a “Piezo Roof Harvesting System”. After presenting a state of art of the harvesting systems from environmental energy, linked to vibrations, using piezoelectric structures, and of piezoelectric harvesting systems functioning with rain, the authors propose an analysis of the fundamental features of rainy precipitations for the definition of the harvesting system. Then, four key patterns for the realization of a piezoelectric energy harvesting system are discussed and analysed, arriving to the choice of a cantilever beam scheme, in which the piezoelectric material works in 31 mode. An electro-mechanical model for the simulation of performance of the unit for the energetic conversion, composed of three blocks, is proposed. The model is used for a simulation campaign to perform the final choice of the more suitable piezoelectric unit, available on the market, which will be adopted for the realization of the “Piezo Roof Harvesting System”.

Go to article

Bibliography

[1] Annual Energy Outlook 2013. Report, Energy Information Administration, Washington, DC, USA, 2013.
[2] B.S. Lee, J.J. He, W.J. Wu, and W.P. Shih. MEMS generator of power harvesting by vibrations using piezoelectric cantilever beam with digitate electrode. In Proceedings SPIE, Smart Structures and Materials 2006: Damping and Isolation, volume 6169, page 61690B, March, 15 2006. doi: 10.1117/12.658584.
[3] C.S. Lee, J. Joo, S. Han, J.H. Lee, and S.K. Koh. Poly (vinylidene fluoride) transducers with highly conducting poly (3, 4-ethylenedioxythiophene) electrodes. Synthetic Metals, 152(1-3):49–52, 2005. doi: 10.1016/j.synthmet.2005.07.116.
[4] F. Mohammadi, A. Khan, and R.B. Cass. Power generation from piezoelectric lead zirconate titanate fiber composites. In Materials Research Society Proceedings, volume 736, page D5.5, 2002. doi: 10.1557/PROC-736-D5.5.
[5] H.A. Sodano, J.M. Lloyd, and D.J. Inman. An experimental comparison between several active composite actuators for power generation. In Proceedings SPIE, Smart Structures and Materials 2004: Smart Structures and Integrated Systems, volume 5390, pages 370–378, July 26 2004. doi: 10.1117/12.540192.
[6] H.A. Sodano, D.J. Inman, and G. Park. A review of power harvesting from vibration using piezoelectric materials. Shock and Vibration Digest, 36(3):197–205, 2004.
[7] H.A. Sodano, G. Park, and D.J. Inman. Estimation of electric charge output for piezoelectric energy harvesting. Strain, 40(2):49–58, 2004. doi: 10.1111/j.1475-1305.2004.00120.x.
[8] J. Baker, S. Roundy, and P. Wright. Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. In 3rd International Energy Conversion Engineering Conference, page 5617, San Francisco, CA, USA, 16-18 August 2005. doi: 10.2514/6.2005-5617.
[9] S. R Platt, S. Farritor, and H. Haider. On low-frequency electric power generation with PZT ceramics. IEEE/ASME Transactions on Mechatronics, 10(2):240–252, 2005. doi: 10.1109/TMECH.2005.844704.
[10] T.H. Ng and W.H. Liao. Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor. Journal of Intelligent Material Systems and Structures, 16(10):785–797, 2005. doi: 10.1177/1045389X05053151.
[11] S. Roundy. On the effectiveness of vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures, 16(10):809–823, 2005. doi: 10.1177/1045389X05054042.
[12] D. Benasciutti, E. Brusa, L. Moro, and S. Zelenika. Optimised piezoelectric energy scavengers for elder care. In Proceedings of European Society Precision Engineering & Nanotech (EUSPEN) Conference, pages 41–45, Zurich, Switzerland, May 2008.
[13] L. Mateu and F. Moll. Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. Journal of Intelligent Material Systems and Structures, 16(10):835–845, 2005. doi: 10.1177/1045389X05055280.
[14] K. Mossi, C. Green, Z. Ounaies, and E. Hughes. Harvesting energy using a thin unimorph prestressed bender: geometrical effects. Journal of Intelligent Material Systems and Structures, 16(3):249–261, 2005. doi: 10.1177/1045389X05050008.
[15] M. Ericka, D. Vasic, F. Costa, G. Poulin, and S. Tliba. Energy harvesting from vibration using a piezoelectric membrane. In Journal de Physique IV (Proceedings), volume 128, pages 187–193, September 2005. doi: 10.1051/jp4:2005128028.
[16] S. Kim, W. W Clark, and Q.M. Wang. Piezoelectric energy harvesting with a clamped circular plate: analysis. Journal of intelligent Material Systems and Structures, 16(10):847–854, 2005. doi: 10.1177/1045389X05054044.
[17] S. Kim, W. W Clark, and Q.M. Wang. Piezoelectric energy harvesting with a clamped circular plate: experimental study. Journal of Intelligent Material Systems and Structures, 16(10):855–863, 2005. doi: 10.1177/1045389X05054043.
[18] J. Han, A. von Jouanne, T. Le, K. Mayaram, and T.S. Fiez. Novel power conditioning circuits for piezoelectric micropower generators. In Applied Power Electronics Conference and Exposition, 2004. APEC’04. Nineteenth Annual IEEE, volume 3, pages 1541–1546, 2004. doi: 10.1109/APEC.2004.1296069.
[19] E. Lefeuvre, A. Badel, C. Richard, L. Petit, and D. Guyomar. A comparison between several vibration-powered piezoelectric generators for standalone systems. Sensors and Actuators A: Physical, 126(2):405–416, 2006. doi: 10.1016/j.sna.2005.10.043.
[20] A. Preumont. Mechatronics. Dynamics of Electromechanical and Piezoelectric Systems, volume 136. Springer, 2006. doi: 10.1007/1-4020-4696-0.
[21] R. Guigon, J.J. Chaillout, T. Jager, and G. Despesse. Harvesting raindrop energy: theory. Smart Materials and Structures, 17(1):015038, 2008. doi: 10.1088/0964-1726/17/01/015038.
[22] R. Guigon, J.J. Chaillout, T. Jager, and G. Despesse. Harvesting raindrop energy: experimental study. Smart Materials and Structures, 17(1):015039, 2008. doi: 10.1088/0964-1726/17/01/015039.
[23] P.V. Biswas, M.A. Uddin, M.A. Islam, M.A.R. Sarkar, V.G. Desa, M.H. Khan, and A.M.A. Huq. Harnessing raindrop energy in Bangladesh. In Proceedings of the International Conference on Mechanical Engineering, Dhaka, Bangladesh, 26-29 December 2009. Paper: ICME09-AM-29.
[24] J.S. Marshall andW. Mc K. Palmer. The distribution of raindrops with size. Journal of Meteorology, 5(4):165–166, 1948. doi: 10.1175/1520-0469(1948)0050165:TDORWS>2.0.CO;2.
[25] J.S. Marshall, R.C. Langille, and W. Mc K. Palmer. Measurement of rainfall by radar. Journal of Meteorology, 4(6):186–192, 1947. doi: 10.1175/1520-0469(1947)0040186:MORBR>2.0.CO;2.
[26] J.O. Laws and D.A. Parsons. The relation of raindrop-size to intensity. Eos, Transactions American Geophysical Union, 24(2):452–460, 1943. doi: 10.1029/TR024i002p00452.
[27] J.W. Ryde. The attenuation and radar echoes produced at centimetre wave-lengths by various meteorological phenomena. In Report of a conference on Meteorological factors in radiowave propagation, pages 169–188, The Physical Society and the Royal Meteorological Society, London, 8 April 1946.
[28] A.C. Best. The size distribution of raindrops. Quarterly Journal of the Royal Meteorological Society, 76(327):16–36, 1950. doi: 10.1002/qj.49707632704.
[29] R. S Sekhon and R.C. Srivastava. Doppler radar observations of drop-size distributions in a thunderstorm. Journal of the Atmospheric Sciences, 28(6):983–994, 1971. doi: 10.1175/1520-0469(1971)0280983:DROODS>2.0.CO;2.
[30] P.T. Willis. Functional fits to some observed drop size distributions and parameterization of rain. Journal of the Atmospheric Sciences, 41(9):1648–1661, 1984. doi: 10.1175/1520-0469(1984)0411648:FFTSOD>2.0.CO;2.
[31] G. Feingold and Z. Levin. The lognormal fit to raindrop spectra from frontal convective clouds in Israel. Journal of Climate and Applied Meteorology, 25(10):1346–1363, 1986. doi: .
[32] D. Sempere-Torres, J.M. Porrà, and J.D. Creutin. A general formulation for raindrop size distribution. Journal of Applied Meteorology, 33(12):1494–1502, 1994. doi: 10.1175/1520-0450(1994)0331494:AGFFRS>2.0.CO;2.
[33] D. Sempere-Torres, J.M. Porrà, and J.D. Creutin. Experimental evidence of a general description for raindrop size distribution properties. Journal of Geophysical Research: Atmospheres, 103(D2):1785–1797, 1998. doi: 10.1029/97JD02065.
[34] K.V. Beard and H.R. Pruppacher. A determination of the terminal velocity and drag of small water drops by means of a wind tunnel. Journal of the Atmospheric Sciences, 26(5):1066–1072, 1969. doi: 10.1175/1520-0469(1969)0261066:ADOTTV>2.0.CO;2.
[35] G. Montero-Martínez, A.B. Kostinski, R.A. Shaw, and F. García-García. Do all raindrops fall at terminal speed? Geophysical Research Letters, 36(11), 2009. L11818, doi: 10.1029/2008GL037111.
[36] M.A. Nearing, J.M. Bradford, and R.D. Holtz. Measurement of force vs. time relations for waterdrop impact. Soil Science Society of America Journal, 50(6):1532–1536, 1986. doi: 10.2136/sssaj1986.03615995005000060030x.
Go to article

Authors and Affiliations

Romeo di Leo
1
Massimo Viscardi
1
Francesco Paolo Tuccinardi
2
Michele Visone
3

  1. Department of Industrial Engineering – Aerospace section, University of Naples “Federico II”, Italy
  2. Promete S.r.l., Naples, Italy
  3. Blue Design S.r.l., Naples, Italy
Download PDF Download RIS Download Bibtex

Abstract

The examination of a smart beam is presented in the paper. Experimental investigations were carried out for flexible beam with one fixed end and free opposite end. Piezoelectric strips were glued on both sides of the beam. One strip works as a sensor, and the second one as an actuator. It is a single input and single output system. The study focuses on the analysis of natural frequencies and modes of the beam in the relation to the position of the piezo-elements. The natural frequencies, mode shapes, generated control forces, and levels of the measured signals are considered and calculated as a functions of the piezo-element locations. We have found correlations between mode shapes, changes of natural frequencies, control forces and measured signals for the lowest four modes. In this way, we can find the optimal localization of the distributed sensors and actuator on the mechanical structure directly by the using of the finite elements method (FEM).

Go to article

Authors and Affiliations

Zdzisław Gosiewski
Łukasz Czapko
Andrzej Koszewnik
Download PDF Download RIS Download Bibtex

Abstract

The presented paper concerns a novel concept of hybrid piezoelectric motor based on electroactive lubrication principle. Its structure is combined of quasi-static and resonance piezoelectric actuators, synchronizing their work to generate the rotary movement. The hybrid motor topology is compared to the existing piezoelectric motors, regarding its field of applications in embedded systems with very high security requirements. The electroactive lubrication principle is briefly presented with regards to optimization of the hybrid motor. The performance principle of the hybrid motor is described in terms of its working cycle. The assembling process of the prototype hybrid motor is briefly explained with emphasis put on the frequency and impedance tuning of the applied quasi-static and resonance piezoelectric actuators. Next, the hybrid motor power supply system is described and chosen measured performance characteristics are presented. Finally, conclusions concerning the features of the tested prototype hybrid motor and possible solutions of the faced issues, during assembling and testing, are presented.

Go to article

Authors and Affiliations

Jean-Francois Rouchon
Dominique Harribey
Duc-Hoan Tran
Roland Ryndzionek
Łukasz Sienkiewicz
Mieczysław Ronkowski
Michal Michna
Grzegorz Kostro
Download PDF Download RIS Download Bibtex

Abstract

The dependence of piezoelectric wave impedance on the rotation speed is investigated theoretically and numerically. The Coriolis force due to rotation is introduced into the piezoelectric motion equations, which is solved by the harmonic plane wave solution. It is shown that the wave impedance variations of longitudinal and transverse waves due to rotation are clearly different. The longitudinal wave impedance continuously increases with a small rotation ratio and one transverse wave impedance is almost irrespective of a rotation ratio. In contrast, the rotation applies a big impact on the other transversal wave impedances in the piezoelectric crystal which decreases monotonically with the rotation speed. Such characteristics are significant in piezoelectric transducers and sensors.
Go to article

Authors and Affiliations

Xiaoguang Yuan
1
Chaoyu Hao
1
Quan Jiang
1

  1. School of Transportation and Civil Engineering, Nantong University, Nantong, China
Download PDF Download RIS Download Bibtex

Abstract

Considering the low accuracy and low efficiency of the traditional calibration method for base strain sensitivity of accelerometers, a novel base strain sensitivity calibration system with steady harmonic excitation is proposed. The required cantilever beam for calibration is driven by an electromagnetic exciter to generate a base strain varying in a steady harmonic pattern. By applying a Wheatstone bridge circuit, the generated strain with low distortion can be measured. The measurement system with a compensation function can automatically calibrate the base strain sensitivity. The amplitude linearity and frequency response characteristics of the base strain sensitivity in two accelerometers are obtained experimentally, and the uncertainty in the results is 2% ( k = 2).
Go to article

Authors and Affiliations

Chuwei Ye
1

  1. The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang Province Key Laboratory of Advanced Manufacturing Technology, Zhejiang University, 310027, Hangzhou, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the performance and frequency bandwidth of the piezoelectric energy harvester (PZEH) is improved by introducing two permanent magnets attached to the proof mass of a dual beam structure. Both magnets are in the vicinity of each other and attached in such a way to proof mass of a dual beam so that they create a magnetic field around each other. The generated magnetic field develops a repulsive force between the magnets, which improves electrical output and enhances the bandwidth of the harvester. The simple rectangular cantilever structure with and without magnetic tip mass has a frequency bandwidth of 4 Hz and 4.5 Hz, respectively. The proposed structure generates a peak voltage of 20 V at a frequency of 114.51 Hz at an excitation acceleration of 1 g (g= 9.8 m/s2 ). The peak output power of a proposed structure is 25.5 µW. The operational frequency range of a proposed dual beam cantilever with a magnetic tip mass of 30 mT is from 102.51 Hz to 120.51 Hz, i.e., 18 Hz. The operational frequency range of a dual beam cantilever without magnetic tip mass is from 104.18 Hz to 118.18 Hz, i.e., 14 Hz. There is an improvement of 22.22% in the frequency bandwidth of the proposed dual beam cantilever with a magnetic tip mass of 30 mT than the dual beam without magnetic tip mass.

Go to article

Bibliography

  1.  P. Glynne-Jones, M.J. Tudor, S.P. Beeby, and N.M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems”, Sens. Actuators, A, vol. 110, no. 1–3, pp. 344– 349, 2004, doi: 10.1016/j.sna.2003.09.045.
  2.  P.D. Mitcheson, P. Miao, B.H. Stark, E.M. Yeatman, A.S. Holmes, and T.C. Green, “MEMS electrostatic micropower generator for low frequency operation”, Sens. Actuators, A,vol. 115, no. 2–3, pp. 523–529, 2004, doi: 10.1016/j.sna.2004.04.026.
  3.  P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, and T.C. Green, “Energy harvesting from human and machine motion for wireless electronic devices”, Proc. IEEE, vol. 96, no. 9, pp. 1457–1486, 2008, doi: 10.1109/ JPROC.2008.927494.
  4.  M. Ostrowski, B. Błachowski, M. Bocheński, D. Piernikarski, P. Filipek, and W. Janicki, “Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers”, Bull. Pol. Acad. Sci. Tech. Sci. vol. 68, no. 6, pp. 1373–1383, 2020, doi: 10.24425/bpasts.2020.135384.
  5.  A. Anand, S. Pal, and S. Kundu, “Multi-perforated EnergyEfficient Piezoelectric Energy Harvester Using Improved Stress Distribution”, IETE J. Res., pp. 1–16, 2021, doi: 10.1080/03772063.2021.1913071.
  6.  A. Anand, S. Naval, P.K. Sinha, N.K. Das, and S. Kundu, “Effects of coupling in piezoelectric multi-beam structure”, Microsyst. Technol., vol. 26, no. 4, pp. 1235–1252, 2020, doi: 10.1007/s00542-019-04653-3.
  7.  A. Anand, and S. Kundu, “Improvement of Output Power in Piezoelectric Energy Harvester under Magnetic Influence”, Proceedings of 3rd International Conference on 2019 Devices for Integrated Circuit (DevIC 2019 IEEE), 2019, pp. 382–385, doi: 10.1109/DEVIC.2019.8783607.
  8.  A. Anand and S. Kundu, “Design of a spiral-shaped piezoelectric energy harvester for powering pacemakers”, Nanomater. Energy, vol. 8, no. 2, pp. 139–150, 2019, doi: 10.1680/jnaen.19.00016.
  9.  A. Anand and S. Kundu, “Design of Mems Based Piezoelectric Energy Harvester for Pacemaker”, Proceedings of 3rd International Conference on Devices for Integrated Circuit (DevIC 2019), 2019, pp. 465–469, doi: 10.1109/DEVIC.2019.8783311.
  10.  S. Roundy, P.K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes”, Comput. Commun., vol. 26, no. 11, pp. 1131–1144, 2003, doi: 10.1016/S0140-3664(02)00248-7.
  11.  S. Naval, P.K. Sinha, N.K. Das, A. Anand, and S. Kundu, “Wideband piezoelectric energy harvester design using parallel connection of multiple beams”, Int. J. Nanopart., vol. 12, no. 3, pp. 206–223, 2020, doi: 10.1504/IJNP.2020.109545.
  12.  S. Naval, P.K. Sinha, N.K. Das, A. Anand, and S. Kundu, “Bandwidth Increment of Piezoelectric Energy Harvester using Multibeam Structure”, Proceedings of 3rd International Conference on 2019 Devices for Integrated Circuit (DevIC 2019), 2019, pp. 370–373, doi: 10.1109/ DEVIC.2019.8783724.
  13.  H. S. Kim, J. H. Kim, and J. Kim, “A review of piezoelectric energy harvesting based on vibration”, Int. J. Precis. Eng. Manuf., vol. 12, no. 6, pp. 1129–1141, 2011, doi: 10.1007/s12541-0110151-3.
  14.  K. Sokół,“Passive control of instability regions by means of piezoceramic elements”, Lat. Am. J. Solids Struct., vol. 18, no. 1, p. e320, 2021, doi: 10.1590/1679-78256015.
  15.  H. Irschik, “A review on static and dynamic shape control of structures by piezoelectric actuation”, Eng. Struct., vol. 24, no. 1, pp. 5–11, 2002, doi: 10.1016/S0141-0296(01)00081-5.
  16.  J. Peng, G. Zhang, M. Xiang, H. Sun, X. Wang, and X. Xie, “Vibration control for the nonlinear resonant response of a piezoelectric elastic beam via time-delayed feedback”, Smart Mater. Struct., vol. 28, no. 9, p. 095010, 2019, doi: 10.1088/1361-665X/ab2e3d.
  17.  H. Hu, Y. Han, A. Song, S. Chen, C. Wang, and Z. Wang, “A finger-shaped tactile sensor for fabric surfaces evaluation by 2-dimensional active sliding touch”, Sensors, vol. 14, no. 3, pp. 4899–4913, 2014, doi: 10.3390/s140304899.
  18.  M.F. Daqaq, R. Masana, A. Erturk, and D. Dane Quinn, “On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion”, Appl. Mech. Rev., vol. 66, no. 4, p. 040801, 2014, doi: 10.1115/1.4026278.
  19.  V.R. Challa, M.G. Prasad, Y. Shi, and F.T. Fisher, “A vibration energy harvesting device with bidirectional resonance frequency tunability”, Smart Mater. Struct., vol. 17, no. 1, p. 015035, 2008, doi: 10.1088/0964-1726/17/01/015035.
  20.  D.A. Barton, S.G. Burrow, and L.R. Clare, “Energy harvesting from vibrations with a nonlinear oscillator”, J. Vib. Acoust., vol. 132, no. 2, 2010, doi: 10.1115/1.4000809.
  21.  S.C. Stanton, C.C. McGehee, and B.P. Mann, “Reversible hysteresis for broadband magnetopiezoelastic energy harvesting”, Appl. Phys. Lett., vol. 95, no. 17, p. 174103, 2009, doi: 10.1063/1.3253710.
  22.  A. Erturk and D.J. Inman, “Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling”, J. Sound. Vib., vol. 330, no. 10, pp. 2339–2353, 2011, doi: 10.1016/j.jsv.2010.11.018.
  23.  S. Zhou, J. Cao, A. Erturk, and J. Lin, “Enhanced broadband piezoelectric energy harvesting using rotatable magnets”, Appl. Phys. Lett., vol. 102, no. 17, p. 173901, 2013, doi: 10.1063/1.4803445.
  24.  S. Zhou, J. Cao, W. Wang, S. Liu, and J. Lin, “Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration”, Smart Mater. Struct., vol. 24, no. 5, p. 055008, 2015, doi: 10.1088/0964-1726/24/5/055008.
  25.  S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, and Z. Wang, “Broadband tristable energy harvester: modeling and experiment verification”, Appl. Energy; vol. 133, pp. 33–39, 2014, doi: 10.1016/j.apenergy.2014.07.077.
  26.  L. Haitao, Q. Weiyang, L. Chunbo, D. Wangzheng, and Z. Zhiyong, “Dynamics and coherence resonance of tristable energy harvesting system”, Smart Mater. Struct., vol. 25, no. 1, p. 015001, 2015, doi: 10.1088/0964-1726/ 25/1/015001.
  27.  J.Y. Cao, S.X. Zhou, W. Wang, and J. Lin, “Influence of potential well depth on nonlinear tristable energy harvesting”, Appl. Phys. Lett., vol. 106, no. 7, p. 173903, 2015, doi: 10.1063/1.4919532.
  28.  P. Kim and J. Seok, “A multi-stable energy harvester: dynamic modeling and bifurcation analysis”, J. Sound Vib., vol. 333, no. 21, pp. 5525–5547, 2014, doi: 10.1016/j.jsv. 2014.05.054.
  29.  Z. Zhou, W. Qin, Y. Yang, and P. Zhu, “Improving efficiency of energy harvesting by a novel penta-stable configuration”, Sens. Actuators, A,, vol. 265, pp. 297–305, 2017, doi: 10.1016/j.sna.2017.08.039.
  30.  D. Tan, Y.G. Leng, and Y.J. Gao, “Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field”, Eur. Phys. J. Spec. Top., vol. 224, no. 14, pp. 2839–2853, 2015, doi: 10.1140/epjst/e2015-02592-6.
  31.  D. Zhu, S. Roberts, M.J. Tudor, and S.P. Beeby, “Design and experimental characterization of a tunable vibration-based electromagnetic micro- generator”, Sens. Actuators, A,, vol. 158, no. 2, pp. 284–293, 2010, doi: 10.1016/j.sna.2010.01.002.
  32.  W.J. Su, J. Zu, and Y. Zhu, “Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester”, J. Intell. Mater. Syst. Struct., vol. 25, no. 4, pp. 430–442, 2014, doi: 10.1177/1045389X 13498315.
  33.  D. Guo, X.F. Zhang, H.Y. Li, and H. Li, “Piezoelectric Energy Harvester Array with Magnetic Tip Mass”, in ASME International Mechanical Engineering Congress and Exposition, 2015, vol. 57403, p. V04BT04A045, doi: 10.1115/IMECE201551044.
  34.  S.S. Rao, Vibration of continuous systems, John Wiley and Sons, Ltd, 2019, doi: 10.1002/9781119424284.
Go to article

Authors and Affiliations

Ashutosh Anand
1 2
ORCID: ORCID
Srikanta Pal
2
Sudip Kundu
3
ORCID: ORCID

  1. Department of Electronics and Communication Engineering, Presidency University Bangalore, India
  2. Department of Electronics and Communication Engineering, Birla Institute of Technology, Mesra Ranchi, India
  3. Department of Electronics and Communication Engineering and Center for Nanomaterials, National Institute of Technology Rourkela, India
Download PDF Download RIS Download Bibtex

Abstract

Although the study of oscillatory motion has a long history, going back four centuries, it is still an active subject of scientific research. In this review paper prospective research directions in the field of mechanical vibrations were pointed out. Four groups of important issues in which advanced research is conducted were discussed. The first are energy harvester devices, thanks to which we can obtain or save significant amounts of energy, and thus reduce the amount of greenhouse gases. The next discussed issue helps in the design of structures using vibrations and describes the algorithms that allow to identify and search for optimal parameters for the devices being developed. The next section describes vibration in multi-body systems and modal analysis, which are key to understanding the phenomena in vibrating machines. The last part describes the properties of granulated materials from which modern, intelligent vacuum-packed particles are made. They are used, for example, as intelligent vibration damping devices.
Go to article

Bibliography

  1. F.K. Shaikh and S. Zeadally, “Energy harvesting in wireless sensor networks: A comprehensive review”, Renew. Sustain. Energy Rev., vol. 55, pp. 1041–1054, 2016, doi: 10.1016/j.rser.2015.11.010.
  2.  M.T. Todaro et al., “Piezoelectric MEMS vibrational energy harvesters: Advances and outlook”, Microelectron. Eng., vol. 183– 184, pp. 23–36, 2017, doi: 10.1016/j.mee.2017.10.005.
  3.  F. Ali, W. Raza, X. Li, H. Gul, and K.H. Kim, “Piezoelectric energy harvesters for biomedical applications”, Nano Energy, vol. 57, pp. 879–902, 2019, doi: 10.1016/j.nanoen.2019. 01.012.
  4.  M.R. Sarker, S. Julai, M.F.M. Sabri, S.M. Said, M.M. Islam, and M. Tahir, “Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system”, Sensors Actuators, A Phys., vol. 300, p. 111634, 2019, doi: 10.1016/j.sna.2019.111634.
  5.  N. Tran, M. H. Ghayesh, and M. Arjomandi, “Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement”, Int. J. Eng. Sci., vol. 127, pp. 162–185, 2018, doi: 10.1016/j.ijengsci.2018.02.003.
  6.  C. Wei and X. Jing, “A comprehensive review on vibration energy harvesting: Modelling and realization”, Renew. Sustain. Energy Rev., vol. 74, pp. 1–18, 2017, doi: 10.1016/j.rser.2017. 01.073.
  7.  T. Yildirim, M.H. Ghayesh, W. Li, and G. Alici, “A review on performance enhancement techniques for ambient vibration energy harvesters”, Renew. Sustain. Energy Rev., vol. 71, pp. 435– 449, 2017, doi: 10.1016/j.rser.2016.12.073.
  8.  H. Liu, J. Zhong, C. Lee, S.W. Lee, and L. Lin, “A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications”, Appl. Phys. Rev., vol. 5, no. 4, 2018, doi: 10.1063/1.5074184.
  9.  A. Erturk and D.J. Inman, “A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters”,  J. Vib. Acoust. Trans. ASME, vol. 130, no. 4, pp. 1–15, 2008, doi: 10.1115/1.2890402.
  10.  Y. Yang and L. Tang, “Equivalent circuit modeling of piezoelectric energy harvesters”, J. Intell. Mater. Syst. Struct., vol. 20, no. 18, pp. 2223–2235, 2009, doi: 10.1177/1045389X09351757.
  11.  L. Yu, L. Tang, and T. Yang, “Piezoelectric passive self-tuning energy harvester based on a beam-slider structure”, J. Sound Vib., vol. 489, p. 115689, 2020, doi: 10.1016/j.jsv.2020.115689.
  12.  M. Sayed, A.A. Mousa, and I. Mustafa, “Stability and bifurcation analysis of a buckled beam via active control”, Appl. Math. Model., vol. 82, pp. 649–665, 2020, doi: 10.1016/j.apm.2020.01.074.
  13.  S. Zhou, J. Cao, and J. Lin, “Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters”, Nonlinear Dyn., vol. 86, no. 3, pp. 1599–1611, 2016, doi: 10.1007/s11071-0162979-7.
  14.  H. T. Nguyen, D. Genov, and H. Bardaweel, “Mono-stable and bi-stable magnetic spring based vibration energy harvesting systems subject to harmonic excitation: Dynamic modeling and experimental verification”, Mech. Syst. Signal Process., vol. 134, p. 106361, 2019, doi: 10.1016/j.ymssp.2019.106361.
  15.  T. Huguet, A. Badel, O. Druet, and M. Lallart, “Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness”, Appl. Energy, vol. 226, pp. 607–617, 2018, doi: 10.1016/j.apenergy.2018. 06.011.
  16.  H. Wang and L. Tang, “Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling”, Mech. Syst. Signal Process., vol. 86, pp. 29–39, 2017, doi: 10.1016/j.ymssp.2016.10.001.
  17.  Y. Zhang, Y. Leng, S. Fan, “The Accurate Analysis of Magnetic Force of Bi-stable Piezoelectric Cantilever Energy Harvester”, presented at the ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference, Cleveland, Ohio, USA, 2017, doi: 10.1115/ DETC2017-67168.
  18.  T. Tan, Z. Yan, K. Ma, F. Liu, L. Zhao, and W. Zhang, “Nonlinear characterization and performance optimization for broadband bistable energy harvester”, Acta Mech. Sin. Xuebao, vol. 36, no. 3, pp. 578–591, 2020, doi: 10.1007/s10409-020-00946-3.
  19.  K. Wang, X. Dai, X. Xiang, G. Ding, and X. Zhao, “Optimal potential well for maximizing performance of bi-stable energy harvester”, Appl. Phys. Lett., vol. 115, no. 14, 2019, doi: 10.1063/1.5095693.
  20.  V. Shah, R. Kumar, M. Talha, and J. Twiefel, “Numerical and experimental study of bistable piezoelectric energy harvester”, Integr. Ferroelectr., vol. 192, no. 1, pp. 38–56, 2018, doi: 10.1080/ 10584587.2018.1521669.
  21.  T. Yang and Q. Cao, “Dynamics and high-efficiency of a novel multi-stable energy harvesting system”, Chaos Solitons Fractals, vol. 131, p. 109516, 2020, doi: 10.1016/j.chaos.2019. 109516
  22.  Z. Zhou, W. Qin, and P. Zhu, “Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester”, Sens. Actuators, A, vol. 243, pp. 151–158, 2016, doi: 10.1016/ j.sna.2016.03.024.
  23.  M. Panyam and M.F. Daqaq, “Characterizing the effective bandwidth of tri-stable energy harvesters”, J. Sound Vib., vol. 386, pp. 336–358, 2017, doi: 10.1016/j.jsv.2016.09.022.
  24.  Y. Leng, D. Tan, J. Liu, Y. Zhang, and S. Fan, “Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation”, J. Sound Vib., vol. 406, pp. 146–160, 2017, doi: 10.1016/j.jsv.2017.06.020.
  25.  M. Lallart, S. Zhou, Z. Yang, L. Yan, K. Li, and Y. Chen, “Coupling mechanical and electrical nonlinearities: The effect of synchronized discharging on tristable energy harvesters”, Appl. Energy, vol. 266, no. January, p. 114516, 2020, doi: 10.1016/ j.apenergy.2020.114516.
  26.  J. Wang and Z. Wang, “A double bi-stable energy harvester for enhanced ability of bi-stable energy harvesting from random vibration”, J. Appl. Sci. Eng., vol. 20, no. 3, pp. 387–392, 2017, doi: 10.6180/jase.2017.20.3.13.
  27.  G. Wang, W. Liao, B. Yang, X. Wang, W. Xu, and X. Li, “Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier”, Mech. Syst. Signal Process., vol. 105, pp. 427–446, 2018, doi: 10.1016/ j.ymssp.2017.12.025.
  28.  Z. Zhou, W. Qin, W. Du, P. Zhu, and Q. Liu, “Improving energy harvesting from random excitation by nonlinear flexible bistable energy harvester with a variable potential energy function”, Mech. Syst. Signal Process., vol. 115, pp. 162–172, 2019, doi: 10.1016/j.ymssp.2018.06.003.
  29.  X. Li et al., “Broadband spring-connected bi-stable piezoelectric vibration energy harvester with variable potential barrier”, Results Phys., vol. 18, no. May, p. 103173, 2020, doi: 10.1016/ j.rinp.2020.103173.
  30.  S. Zhou, J. Cao, D.J. Inman, J. Lin, S. Liu, and Z. Wang, “Broadband tristable energy harvester: Modeling and experiment verification”, Appl. Energy, vol. 133, pp. 33–39, 2014, doi: 10.1016/j.apenergy.2014.07.077.
  31.  Z. Zhou, W. Qin, Y. Yang, and P. Zhu, “Improving efficiency of energy harvesting by a novel penta-stable configuration”, Sensors Actuators A., vol. 265, pp. 297–305, 2017, doi: 10.1016/ j.sna.2017.08.039.
  32.  D. Huang, S. Zhou, and G. Litak, “Theoretical analysis of multistable energy harvesters with high-order stiffness terms”, Commun. Nonlinear Sci. Numer. Simul., vol. 69, pp. 270–286, 2019, doi: 10.1016/j.cnsns.2018.09.025.
  33.  C. Lan and W. Qin, “Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester”, Mech. Syst. Signal Process., vol. 85, pp. 71–81, 2017, doi: 10.1016/j.ymssp.2016.07.047.
  34.  M. Ostrowski, B. Błachowski, M. Bochen´ski, D. Piernikarski, P. Filipek, and W. Janicki, “Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers”, Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 6, pp. 1373–1383, 2020, doi: 10.24425/bpasts.2020.135384.
  35.  D. Tan, Y.G. Leng, and Y.J. Gao, “Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field”, Eur. Phys. J. Spec. Top., vol. 224, no. 14–15, pp. 2839–2853, 2015, doi: 10.1140/epjst/e2015-02592-6.
Go to article

Authors and Affiliations

Xinxin Li
1
Kexue Huang
1
Zhilin Li
1
Jiangshu Xiang
1
Zhenfeng Huang
1
Hanling Mao
1
Yadong Cao
1

  1. College of Mechanical Engineering, Guangxi University, Nanning, China
Download PDF Download RIS Download Bibtex

Abstract

A gyroscopic rotor exposed to unbalance and internal damping is controlled with an active piezoelectrical bearing in this paper. The used rotor test-rig is modelled using an FEM approach. The present gyroscopic effects are then used to derive a control strategy which only requires a single piezo actuator, while regular active piezoelectric bearings require two. Using only one actuator generates an excitation which contains an equal amount of forward and backward whirl vibrations. Both parts are differently amplified by the rotor system due to gyroscopic effects, which cause speed-dependent different eigenfrequencies for forward and backward whirl resonances. This facilitates eliminating resonances and stabilize the rotor system with only one actuator but requires two sensors. The control approach is validated with experiments on a rotor test-rig and compared to a control which uses both actuators.
Go to article

Authors and Affiliations

Jens Jungblut
1
ORCID: ORCID
Daniel Franz
1
Christian Fischer
1
ORCID: ORCID
Stephan Rinderknecht
1
ORCID: ORCID

  1. Institute for Mechatronic Systems, Technical University Darmstadt, 64287, Germany
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the novel concept of the magnetoelectric sensor constructed using the amorphous glass ribbon. Its output characteristics (voltage pattern), conditions of work and experimental results are presented. The novel construction allows for minimizing the demagnetizing field in the core of the sensor and linearization of the characteristics between the magnetic field and obtained voltage. Conducted experiments were aimed at determining the sensor operation in the presence of the constant magnetic field (HDC). The main concern of the tests was to verify the linear dependency between the HDC value and the amplitude of the output voltage. Next, the computer model representing the sensor behavior in the constant magnetic field is described. The model implements the parameter identification task based on the regression algorithms. The presented work shows that the proposed device can be used to measure the weak magnetic field and the dependency between the output signal amplitudes and the constant component in the measured magnetic field is approximately linear. This enables measurements of even weak fields.
Go to article

Authors and Affiliations

Karol Kuczynski
1
ORCID: ORCID
Piotr Bilski
1
ORCID: ORCID
Adrian Bilski
2
ORCID: ORCID
Jerzy Szymanski
3
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics and Multimedia Technology, Poland
  2. Warsaw University of Life Sciences, Poland
  3. Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of Transport, Electrical Engineering and Computer Science, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study aims to evaluate the effectiveness of machine learning (ML) models in predicting concrete damage using electromechanical impedance (EMI) data. From numerous experimental evidence, the damaged mortar sample with surface-mounted piezoelectric (PZT) material connected to the EMI response was assessed. This work involved the different ML models to identify the accurate model for concrete damage detection using EMI data. Each model has been evaluated with evaluation metrics with the prediction/true class and each class is classified into three levels for testing and trained data. Experimental findings indicate that as damage to the structure increases, the responsiveness of PZT decreases. Therefore, examined the ability of ML models trained on existing experimental data to predict concrete damage using the EMI data. The current work successfully identified the approximately close ML models for predicting damage detection in mortar samples. The proposed ML models not only streamline the identification of key input parameters with models but also offer cost-saving benefits by reducing the need for multiple trials in experiments. Lastly, the results demonstrate the capability of the model to produce precise predictions.
Go to article

Authors and Affiliations

Asraar Anjum
Meftah Hrairi
Abdul Aabid
ORCID: ORCID
Norfazrina Yatim
Maisarah Ali
Download PDF Download RIS Download Bibtex

Abstract

In this work, an approach to the design of broadband thickness-mode piezoelectric transducer is pre- sented. In this approach, simulation of discrete time model of the impulse response of matched and backed piezoelectric transducer is used to design high sensitivity, broad bandwidth, and short-duration impulse response transducers. The effect of matching the performance of transmitting and receiving air backed PZT-5A transducer working into water load is studied. The optimum acoustical characteristics of the quarter wavelength matching layers are determined by a compromise between sensitivity and pulse duration. The thickness of bonding layers is smaller than that of the quarter wavelength matching layers so that they do not change the resonance peak significantly. Our calculations show that the −3 dB air backed transducer bandwidth can be improved considerably by using quarter wavelength matching layers. The computer model developed in this work to predict the behavior of multilayer structures driven by a transient waveform agrees well with measured results. Furthermore, the advantage of this this model over other approaches is that the time signal for optimum set of matching layers can be predicted rapidly
Go to article

Authors and Affiliations

Mohamed G.S. Ali
Nour Z. Elsayed
Ebtsam A. Eid
Download PDF Download RIS Download Bibtex

Abstract

The paper provides analysis of the influence of temperature on the error of weigh-in-motion (WIM) systems utilizing piezoelectric polymer load sensors. Results of tests of these sensors in a climatic chamber, as well as results of long-term tests at the WIM site, are presented. Different methods for correction of the influence of changes in temperature were assessed for their effectiveness and compared.

Go to article

Authors and Affiliations

Janusz Gajda
Piotr Burnos
Ryszard Sroka
Tadeusz Zeglen
Download PDF Download RIS Download Bibtex

Abstract

Successful implementation of an active vibration control system is strictly correlated to the exact knowledge of the dynamic behavior of the system, of the excitation level and spectra and of the sensor and actuator’s specification. Only the correct management of these aspects may guarantee the correct choice of the control strategy and the relative performance. Within this paper, some preliminary activities aimed at the creation of a structurally simple, cheap and easily replaceable active control systems for metal panels are discussed. The final future aim is to control and to reduce noise, produced by vibrations of metal panels of the body of a car. The paper is focused on two points. The first one is the realization of an electronic circuit for Synchronized Shunted Switch Architecture (SSSA) with the right dimensioning of the components to control the proposed test article, represented by a rectangular aluminum plate. The second one is a preliminary experimental study on the test article, in controlled laboratory conditions, to compare performances of two possible control approach: SSSA and a feed-forward control approach. This comparison would contribute to the future choice of the most suitable control architecture for the specific attenuation of structure-born noise related to an automotive floor structure under deterministic (engine and road-tyre interaction) and stochastic (road-tyre interaction and aerodynamic) forcing actions.

Go to article

Authors and Affiliations

Massimo Viscardi
Romeo di Leo
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we investigate a problem on reflection and transmission of plane-waves at an interface between two dissimilar half-spaces of a transversely isotropic micropolar piezoelectric material. The entire model is assumed to rotate with a uniform angular velocity. The governing equations of rotating and transversely isotropic micropolar piezoelectric medium are specialized in a plane. Plane-wave solutions of two-dimensional coupled governing equations show the possible propagation of three coupled plane-waves. For an incident plane-wave at an interface between two dissimilar half-spaces, three reflected and three transmitted waves propagate with distinct speeds. The connections between the amplitude ratios of reflected and transmitted waves are obtained. The expressions for the energy ratios of reflected and transmitted waves are also obtained. A numerical example of the present model is considered to illustrate the effects of rotation on the speeds and energy ratios graphically.
Go to article

Authors and Affiliations

Baljeet Singh
1
Asha Sangwan
2
Jagdish Singh
3

  1. Department of Mathematics, Post Graduate Government College, Sector 11, Chandigarh, 160011, India
  2. Department of Mathematics, Government College, Sampla, Rohtak, 124001, Haryana, India
  3. Department of Mathematics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this work is to present a theoretical analysis of top orthogonal to bottom arrays of conducting electrodes of infinitesimal thickness (conducting strips) residing on the opposite surfaces of piezoelectric slab. The components of electric field are expanded into double periodic Bloch series with corresponding amplitudes represented by Legendre polynomials, in the proposed semi-analytical model of the considered two-dimensional (2D) array of strips. The boundary and edge conditions are satisfied directly by field representation, as a result. The method results in a small system of linear equations for unknown expansion coefficients to be solved numerically. A simple numerical example is given to illustrate the method. Also a test transducer was designed and a pilot experiment was carried out to illustrate the acoustic-wave generating capabilities of the proposed arrangement of top orthogonal to bottom arrays of conducting strips.

Go to article

Authors and Affiliations

Jurij Tasinkevych
Ihor Trots
Ryszard Tymkiewicz

This page uses 'cookies'. Learn more