Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a discrete wavelet transform (DWT) based approach is proposed for power system frequency estimation. Unlike the existing frequency estimators mainly used for power system monitoring and control, the proposed approach is developed for fundamental frequency estimation in the field of energy metering of nonlinear loads. The characteristics of a nonlinear load is that the power signal is heavily distorted, composed of harmonics, inter-harmonics and corrupted by noise. The main idea is to predetermine a series of frequency points, and the mean value of two frequency points nearest to the power system frequency is accepted as the approximate solution. Firstly the input signal is modulated with a series of modulating signals, whose frequencies are those frequency points. Then the modulated signals are decomposed into individual frequency bands using DWT, and differences between the maximum and minimum wavelet coefficients in the lowest frequency band are calculated. Similarities among power system frequency and those frequency points are judged by the differences. Simulation results have proven high immunity to noise, harmonic and inter-harmonic interferences. The proposed method is applicable for real-time power system frequency estimation for electric energy measurement of nonlinear loads.

Go to article

Authors and Affiliations

Zhang Peng
Hong-Bin Li
Download PDF Download RIS Download Bibtex

Abstract

Verification of electrical safety in low-voltage power systems includes the measurement of earth fault loop impedance. This measurement is performed to verify the effectiveness of protection against indirect contact. The widespread classic methods and meters use a relatively high value of the measuring current (5÷20) A, so that they are a source of nuisance tripping of residual current devices (RCDs). The meters dedicated to circuits with RCDs usually use an extremely low value of current (lower than 15 mA), which in many cases it is not acceptable in terms of the measurement accuracy. This paper presents a method of earth fault loop impedance measurement in 3-phase circuits, without nuisance tripping of RCDs – the concept of measurement, the meter structure and the experimental validation. The nuisance tripping is avoided in spite of the use of measuring current value many times higher than that of the rated residual current of RCDs. The main advantage of the proposed method is the possibility of creating values of measuring current in a very wide range, what is very important with regard to accuracy of the measurement.

Go to article

Authors and Affiliations

Stanisław Czapp
Download PDF Download RIS Download Bibtex

Abstract

The complexity of power system phenomena challenges power system protection testing to obtain the required adequacy of the testing environment. Hardware-in-the-loop simulation in real-time substantially increases testing capabilities. However, there is still the question of the availability of commercial solutions. To address the challenges, a new hardware-in-the loop system has been designed and implemented utilizing the easily available Matlab/Simulink environment and Linux RT Preempt OS. The custom software part prepared for the presented system is based on the Matlab/Simulink s-function mechanism, Embedded Coder toolbox and Advantech biodaq library as the interface for the utilized I/O cards. The simulator’s real-time performance limits on Linux RT Preempt have been verified, and it was shown that its performance is sufficient to conduct successful tests of protection relays. Consequently, a simple power system protection relay testing example is provided, including a discussion of results. Finally, it has been proven that the presented system can be utilized as a simpler and more accessible hardware-in-the-loop testing alternative to commercial simulators.

Go to article

Authors and Affiliations

M. Krakowski
Ł. Nogal
Download PDF Download RIS Download Bibtex

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics.

Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points.

Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.

Go to article

Authors and Affiliations

Md Musabbir Hossain
Asatur Zh. Khurshudyan
Download PDF Download RIS Download Bibtex

Abstract

Power system state estimation is a process of real-time online modeling of an electric power system. The estimation is performed with the application of a static model of the system and current measurements of electrical quantities that are encumbered with an error. Usually, a model of the estimated system is also encumbered with an uncertainty, especially power line resistances that depend on the temperature of conductors. At present, a considerable development of technologies for dynamic power line rating can be observed. Typically, devices for dynamic line rating are installed directly on the conductors and measure basic electric parameters such as the current and voltage as well as non-electric ones as the surface temperature of conductors, their expansion, stress or the conductor sag angle relative to the plumb line. The objective of this paper is to present a method for power system state estimation that uses temperature measurements of overhead line conductors as supplementary measurements that enhance the model quality and thereby the estimation accuracy. Power system state estimation is presented together with a method of using the temperature measurements of power line conductors for updating the static power system model in the state estimation process. The results obtained with that method have been analyzed based on the estimation calculations performed for an example system - with and without taking into account the conductor temperature measurements. The final part of the article includes conclusions and suggestions for the further research.

Go to article

Authors and Affiliations

Michał Wydra
Piotr Kacejko
Download PDF Download RIS Download Bibtex

Abstract

Software power protection tester implemented in a real-time operating system (RTOS) might replace the conventional testing setups in IEC 61850 protection systems. This paper describes an open power protection testing platform. Linux RT capabilities related to runtime environment for such a tester are examined and OS latency sources are identified and evaluated. An algorithm for a multithreaded tester operation is proposed, including Sampled Values (SV) publisher, GOOSE input/output and time synchronization. SV and GOOSE services implemented in RT Linux environment are evaluated in accordance with IEC 61850‒5 transfer time requirements. Linux PTP time synchronization service of two similar systems controlling its electrical ports is evaluated in different synchronization scenarios. The developed tester is compared to an equivalent conventional setup during the test of IED over-current function. The conducted tests show that the Linux implementation of power protection tester in the case of scheduler latency, time synchronization accuracy and transfer time all meet the requirements of IEC 61850.

Go to article

Authors and Affiliations

K. Kurek
Ł. Nogal
R. Kowalik
ORCID: ORCID
M. Januszewski
Download PDF Download RIS Download Bibtex

Abstract

A new design of decentralized Load Frequency Controller for interconnected thermal non-reheat power systems with AC-DC parallel tie-lines based on Genetic Algorithm (GA) tuned Integral and Proportional (IP) controller is proposed in this paper. A HVDC link is connected in parallel with an existing AC tie-line to stabilize the frequency oscillations of the AC tie-line system. Any optimum controller selected for load frequency control of interconnected power systems should not only stabilize the power system but also reduce the system frequency and tie line power oscillations and settling time of the output responses. In practice Load Frequency Control (LFC) systems use simple Proportional Integral (PI) or Integral (I) controller. The controller parameters are usually tuned based on classical or trial-and-error approaches. But they are incapable of obtaining good dynamic performance for various load change scenarios in multi-area power system. For this reason, in this paper GA tuned IP controller is used. A two area interconnected thermal non-reheat power system is considered to demonstrate the validity of the proposed controller. The simulation results show that the proposed controller provides better dynamic responses with minimal frequency and tie-line power deviations, quick settling time and guarantees closed-loop stability margin.

Go to article

Authors and Affiliations

S. Selvakumaran
V. Rajasekaran
R. Karthigaivel

This page uses 'cookies'. Learn more