Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 42
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper is another step in discussion concerning the method of determining the distributions of pulses forcing vibrations of a system. Solving a stochastic problem for systems subjected to random series of pulses requires determining the distribution for a linear oscillator with damping. The goal of the study is to minimize the error issuing from the finite time interval. The applied model of investigations is supposed to answer the question how to select the parameters of a vibrating system so that the difference between the actual distribution of random pulses and that determined from the waveform is as small as possible.
Go to article

Authors and Affiliations

Agnieszka Ozga
Download PDF Download RIS Download Bibtex

Abstract

The machining technology of electrochemical micromachining with ultra short voltage pulses (μPECM) is based on the already well-established fundamentals of common electrochemical manufacturing technologies. The enormous advantage of the highest manufacturing precision underlies the fact of the extremely small working gaps achievable through ultra short voltage pulses in nanosecond duration. This describes the main difference with common electrochemical technologies. With the theoretical resolution of 10 nm, this technology enables high precision manufacturing.

Go to article

Authors and Affiliations

Richard Zemann
Friedrich Bleicher
Reinhard Zisser-Pfeifer
Download PDF Download RIS Download Bibtex

Abstract

To improve the power quality of a multi-pulse rectifier, a zigzag 18-pulse uncontrolled rectifier with an auxiliary circuit at the DC side is proposed. When the grid-side currents are sinusoidal waves, the required DC side injection currents to be compensated can be obtained by analyzing the AC-DC side relationship of diode bridge rectifiers. Then the 6 compensation currents generated by an active auxiliary circuit are injected into the DC side to eliminate the grid-side harmonics of the rectifier. The simulation results verifying the correctness of the theoretical analysis show that the proposed rectifier can mitigate the harmonic content, as the total harmonic distortion of the grid-side current is about 1.45%. In addition, the single-phase inverter used in the active auxiliary circuit has the characters of simple circuit structure and easy controllability.

Go to article

Authors and Affiliations

Jiongde Liu
Xiaoqiang Chen
Ying Wang
ORCID: ORCID
Tao Chen
Download PDF Download RIS Download Bibtex

Abstract

Food processing technologies for food preservation have been in constant development over a few decades in order to meet current consumer’s demands. Healthy competitive improvements are observed in both thermal and non-thermal food processing technology since past two decades due to technical revolution. Among these novel technologies, pulsed electric field food processing technology has shown to be a potential non-thermal treatment capable of preserving liquid foods. The high-voltage pulse generators specifically find their applications in pulsed electric field technology. So, this paper proposes a new structure of a high-voltage pulse generator with a cascaded boost converter topology. The choice of a cascaded boost converter helps in selecting low DC input voltage and hence the size and space requirement of the high-voltage pulse generator is minimized. The proposed circuit is capable of producing high-voltage pulses with flexibility of an adjusting duty ratio and frequency. The designed circuit generates a maximum peak voltage of 1 kV in the frequency range of 7.5–20 kHz and the pulse width range of 0.8–1.8 μs. Also, the impedance matching between the cascaded boost converter and the high-voltage pulse generator is found simple without further additional components. The efficiency can be improved in the circuit by avoiding low frequency transformers.
Go to article

Bibliography

[1] Nazni P., Shobana Devi R., Effect of Processing on the Characteristics Changes in Barnyard and Foxtail Millet, Journal of Food Processing Technology, vol. 7, no. 3, pp. 1–8 (2016).
[2] Khanam A., Platel K., Influence of domestic processing on the bioaccessibility of selenium from selected food grains and composite meals, Journal of Food Science and Technology, vol. 53, no. 3, pp. 1634–1639 (2016).
[3] Gabaza M., Shumoy H., Louwagie L., Muchuweti M., Vandamme P., Du Laing G., Raes K., Traditional fermentation and cooking of finger millet: Implications on mineral binders and subsequent bioaccessibility, Journal of Food Composition and Analysis, vol. 68, pp. 87–94 (2018).
[4] Sunil Neelash C., Jaivir S., Suresh C., Vipul C., Vikrant K., Non-thermal techniques: Application in food industries-A review, Journal of Pharmacognosy and Phytochemistry, vol. 7, no. 5, pp. 1507–1518 (2018).
[5] Nowosad K., Sujka M., Pankiewicz U., Kowalski R., The application of PEF technology in food processing and human nutrition, Journal of Food Science and Technology, vol. 58, pp. 397–411 (2020), DOI: 10.1007/s13197-020-04512-4.
[6] Rana Muhammad A., Xin-An Z., Zhong H., Amna S., Anees Ahmed K., Ubaid U.R., Muneeb K., Tariq M., Combined effects of pulsed electric field and ultrasound on bioactive compounds and microbial quality of grapefruit juice, Journal of Food Processing and Preservation, vol. 42, no. 2 (2018), DOI: 10.1111/jfpp.13507 (2018).
[7] Ramune B., Gianpiero P., Nerijus L., Saulius S., Pranas V., Giovanna F., Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products, Journal of Food Science and Technology, vol. 52, no. 9, pp. 5898–5905 (2015).
[8] Carbonell-Capella J.M., Buniowska M., Cortes C., Zulueta A., Frigola A., Esteve M.J., Influence of pulsed electric field processing on the quality of fruit juice beverages sweetened with Stevia rebaudiana, Food and Bioproducts Processing, vol. 101, pp. 214–222 (2017).
[9] Caminity I.M., Palgan I., Noci F., Arantxa Muñoz, Whyte P., Cronin D.A., Morgan D.J., Lyng J.G., The effect of pulsed electric fields (PEF) in combination with high intensity light pulses (HILP) on Escherichia coli inactivation and quality attributes in apple juice, Innovative Food Science and Emerging, vol. 12, no. 2, pp. 118–123 (2011).
[10] Morales-de la Pena M., Elez-Martinez P., Martin-Belloso O., Food Preservation by Pulsed Electric Fields: An Engineering Perspective, Food Engineering Reviews, vol. 3, pp. 94–107 (2011).
[11] Buckow R., Sieh N., Toepfl S., Pulsed electric field processing of orange juice: a review on microbial, enzymatic, nutritional and sensory quality and stability, Comprehensive Reviews in Food Science and Food safety, vol. 12, pp. 455–467 (2013).
[12] Toepfl S., Pulsed electric field food processing – Industrial equipment design and commercial applications, Stewart Postharvest Review, vol. 8, pp. 1–7 (2012).
[13] Valic B., Muriel Golzio, Mojca Pavlin, Anne Schatz, Cecile Faurie, Weaver J.C., Electroporation of Cells and Tissues, IEEE Transaction on Plasma Science, vol. 28, pp. 24–33 (2000).
[14] Toepfl S., Heinz V., Knorr D., High intensity pulsed electric fields applied for food preservation, Chemical Engineering and Processing, vol. 46, pp. 537–546 (2007).
[15] Geveke D.J., Kozempel M., Scullen O.J., Brunkhorst C., Radio frequency energy effects on microorganisms in foods, Innovative Food Science and Emerging Technology, vol. 3, no. 2, pp. 133–138 (2002).
[16] Geveke D.J., Brunkhorst C., Inactivation of Escherichia coli in apple juice by radio frequency electric fields, Journal of Food Science, vol. 69, pp. 134–138 (2004).
[17] Geveke D.J., Brunkhorst C., Fan X., Radio frequency electric fields processing of orange juice, Innovative Food Science and Emerging Technologies, vol. 8, pp. 549–554 (2007).
[18] Krishnaveni S., Rajini V., Diode clamped gate driver-based high voltage pulse generator for electroporation, Turkish Journal of Electrical Engineering and Computer Sciences, vol. 26, pp. 2374–2384 (2018).
[19] Pokryvailo A., Yankelevich Y., Shapira M., A compact source of sub gigawatt sub-nanosecond pulses, IEEE Transaction on Plasma Science, vol. 32, pp. 1909–1918 (2004).
[20] Wu Y., Liu K., Qiu J., X., Xiao H., Repetitive and high voltage Marx generator using solid-state devices, IEEE Transaction on Dielectrics and Electrical Insulation, vol. 14, pp. 937–940 (2007).
[21] Ramya R., Raja P.R., Gowrisree V., High Voltage Pulsed Electric Field Application Using Titanium Electrodes for Bacterial Inactivation in Unpurified Water, Japan Journal of Food Engineering, vol. 20, no. 2, pp. 63–70 (2019).
[22] KasriN.N.F., Piah M.A.M., Adzis Z., Compact High-Voltage Pulse Generator for Pulsed Electric Field Applications: Lab-Scale Development, Journal of Electrical and Computer Engineering, vol. 2020, art. ID 6525483, pp. 1–12 (2020), DOI: 10.1155/2020/6525483.
[23] Flisara K., Meglica S.H., Morelj J., Golobb J., Miklavcic D., Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction, Bioelectochemistry, vol. 100, pp. 44–51 (2014).
[24] Merensky L.M., Kardo-Sysoev A., Shmilovitz D., Kesar A.S., Efficiency Study of a 2.2 kV, 1 ns, 1 MHz Pulsed Power Generator Based on a Drift-Step-Recovery Diode, IEEE Transactions on Plasma Science, vol. 41, no. 11, pp. 3138–3142 (2013).
[25] Zhang Y., Liu J., Cheng X., Zhang H., Bai G., A Way for High-Voltage μs-Range Square Pulse Generation, IEEE Transactions on Plasma Science, vol. 39, no. 4, pp. 1125–1130 (2011).
[26] Merla C., Amari S.E., Kenaan M., Liberti M., Apollonio F., Arnaud-Cormos D., Couder V., A 10- High-Voltage Nanosecond Pulse Generator, IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 4079–4085 (2010).
[27] Ndtoungou A., Hamadi A., Missanda A., Al-Haddad K., Modeling and control of a cascaded Boost Converter for a Battery Electric Vehicle, IEEE Electrical Power and Energy Conference, London, ON, Canada, pp. 182–187 (2012).
[28] Stala R., Pirog S., DC–DC boost converter with high voltage gain and a low number of switches in multisection switched capacitor topology, Archives of Electrical Engineering, vol. 67, no. 3, pp. 617–627 (2018), DOI: 10.24425/123667.
[29] Chen Z., Yong W., Gao W., PI and Sliding Mode Control of a Multi-Input-Multi-Output Boost-Boost Converter, WSEAS Transactions on Power Systems, vol. 9, pp. 87–102 (2014).
[30] Sira-Ramirez H., Silva-Origoza R., Control design techniques in power electronics devices, Springer (2006).
[31] Aamir M., Shinwari M.Y., Design, implementation and experimental analysis of two-stage boost converter for grid connected photovoltaic system, 3rd IEEE International Conference on Computer Science and Information Technology, Chengdu, China, pp. 194–199 (2010).
[32] Park S., Choi S., Soft-switched CCM boost converters with high voltage gain for high power applications, IEEE Transaction on Power Electronics, vol. 25, no. 5, pp. 1211–1217 (2010).
[33] Silveira G.C., Tofoli F.L., Bezerra L.D.S., Torrico-Bascope R.P., A nonisolated DC-DC boost converter with high voltage gain and balanced output voltage, IEEE Transaction on Industrial Electronics, vol. 61, no. 12, pp. 6739–6746 (2014).
[34] Sanders J.M., Kuthi A., Wu., Y.H., Vernier P.T., Gundersen M.A., A linear, single-stage, nanosecond pulse generator for delivering intense electric fields to biological loads, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, no. 4, pp. 1048–1054 (2009).


Go to article

Authors and Affiliations

S. Krishnaveni
1
ORCID: ORCID
V. Rajini
1

  1. Sri Sivasubramaniya Nadar College of Engineering, India
Download PDF Download RIS Download Bibtex

Abstract

Generation of two identical ns laser pulses spaced by a single µs time interval by means of sequential switching of the output mirror transmittance in a diode-pumped Nd:YAG laser is reported, to our knowledge, for the first time. The theoretical study of the process of transmission losses switching is developed. This analysis confirms the possibility of generation of two identical Q-switched laser pulses with 100% efficiency with respect to the referenced single pulse energy. The detailed characterization of the laser in free-running, single and double Q-switching regimes is presented. The laser can be applied in different branches of metrology as PIV, LIBS or holographic interferometry.

Go to article

Authors and Affiliations

Marek Skórczakowski
Waldemar Żendzian
Zdzisław Jankiewicz
Download PDF Download RIS Download Bibtex

Abstract

In the paper results of single- and double-pulse LIBS (Laser-Induced Breakdown Spectroscopy) measurements in collinear geometry are described. The experiments were performed using a unique self-made Nd:YAG laser operating in the Q-switching regime, where the laser transmission losses are switched. Such a laser allowed for an easy and quick change of the operating mode (one and two pulses), free shaping of the energy ratio of the two pulses (division of the energy of a single pulse into two parts) and a smooth change of the delay time between pulses in the range from 200 ns to 10 μs. To our knowledge, such a laser was used in LIBS measurements for the first time. LIBS experiments revealed strong self-absorption depending on energy ratios carried out in the first and second laser pulse in the double-pulse mode. This was confirmed also by statistical factorial analysis of LIBS spectra. Plasma temperature and LIBS signal enhancement were measured both for energy proportions between the first and the second laser pulse and for the first-to-second-pulse delay.
Go to article

Authors and Affiliations

Wojciech Skrzeczanowski
1
Marek Skórczakowski
1
Waldemar Żendzian
1

  1. Military University of Technology, Institute of Optoelectronics, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw 46, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the two-temperature thermoelasticity model is proposed to a specific problem of a thermoelastic semi-infinite solid. The bounding plane surface of the semi-infinite solid is considered to be under a non-Gaussian laser pulse. Generalized thermoelasticity analysis with dual-phase-lags is taken into account to solve the present problem. Laplace transform and its inversion techniques are applied and an analytical solution as well as its numerical outputs of the field variables are obtained. The coupled theory and other generalized theory with one relaxation time may be derived as special cases. Comparison examples have been made to show the effect of dual-phase-lags, temperature discrepancy, laser-pulse and laser intensity parameters on all felids. An additional comparison is also made with the theory of thermoelasticity at a single temperature.

Go to article

Authors and Affiliations

Ashraf M. Zenkour
Ahmed E. Abouelregal
Download PDF Download RIS Download Bibtex

Abstract

The paper is devoted to study the effect of gravity, magnetic field and laser pulse on the general model of the equations of generalized thermoelasticity for a homogeneous isotropic elastic half-space. The formulation is applied under four theories of generalized thermoelasticity: the coupled theory, Lord-Schulman theory, Green-Lindsay theory as well as Green-Naghdi theory. By employing normal mode analysis, the analytical expressions for the displacement components, temperature and the (mechanical and Maxwell’s) stresses distribution are obtained in the physical domain. These expressions are also calculated numerically and corresponding graphs are plotted to illustrate and compare the theoretical results. The effect of gravity, magnetic field and laser pulse are also studied and displayed graphically to show the physical meaning of the phenomena. A comparison has been made between the present results and the results obtained by the others. The results indicate that the effects of magnetic field, laser pulse and gravity field are very pronounced.

Go to article

Authors and Affiliations

Sayed M. Abo-Dahab
Abdelmooty M. Abd-Alla
Abdelkalk J. Alqarni
Download PDF Download RIS Download Bibtex

Abstract

This study was conducted to predict the yield and biomass of lentil (Lens culinaris L.) affected by weeds using artificial neural network and multiple regression models. Systematic sampling was done at 184 sampling points at the 8-leaf to early-flowering and at lentil maturity. The weed density and height as well as canopy cover of the weeds and lentil were measured in the first sampling stage. In addition, weed species richness, diversity and evenness were calculated. The measured variables in the first sampling stage were considered as predictive variables. In the second sampling stage, lentil yield and biomass dry weight were recorded at the same sampling points as the first sampling stage. The lentil yield and biomass were considered as dependent variables. The model input data included the total raw and standardized variables of the first sampling stage, as well as the raw and standardized variables with a significant relationship to the lentil yield and biomass extracted from stepwise regression and correlation methods. The results showed that neural network prediction accuracy was significantly more than multiple regression. The best network in predicting yield of lentil was the principal component analysis network (PCA), made from total standardized data, with a correlation coefficient of 80% and normalized root mean square error of 5.85%. These values in the best network (a PCA neural network made from standardized data with significant relationship to lentil biomass) were 79% and 11.36% for lentil biomass prediction, respectively. Our results generally showed that the neural network approach could be used effectively in lentil yield prediction under weed interference conditions.

Go to article

Authors and Affiliations

Alireza Bagheri
Negin Zargarian
Farzad Mondani
Iraj Nosratti
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the phenomena accompanying switching the sinusoidal excitation of an antenna on and off when the antenna is excited by a train of sinusoids containing several to several hundred periods. Transient phenomena are presented against the background of the resonant properties of the antenna. The processes of turning the antenna on and off take place under different conditions and therefore are different. When the antenna is switched on, the transient processes are determined by the antenna properties and the excitation properties. When the antenna is switched off, excitation is no longer present, and the properties of the antenna determine the transient process. We define a new measure of time: the effective light meter.
Go to article

Authors and Affiliations

Anna Witenberg
1

  1. Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The wide variety of electrode shapes and their arrangement relative to each other, as well as the possibility of corona discharge in the ambient air, have created prerequisites for the development of a number of new methods and corona discharge transducers designed to measure microwire parameters and linear dimensions of various objects. The principally new noncontact control method is based on the dependence of the corona discharge current value on the diameter of the corona wire placed inside the discharge chamber. This paper provides an overview of this method.
Go to article

Bibliography

[1] Sh.A.Bahtaev, A.A.Bokanova, G.V.Bochkareva, G.K.Sydykova. Fizika i tehnika koronnorazrjadnyh priborov. Almaty 2007.
[2] Sh.A.Bahtaev, G.K.Sydykova, A.Zh. Tojgozhinova, K.Kodzhabergenova. Koronnyj razrjad na mikrojelektrodah. Almaty 2017 – 78p.
[3] Sh.A.Bakhtaev, G.V Bochkareva., G.D.Musapirova, “The pulsed current mode of the negative corona,” Vestnik Kaz NTU, no. 3, pp. 212-217, 2010.
[4] T. Abiru, F. Mitsugi, T. Ikegami, K. Ebihara, S.-ichi Aoqui, K. Nagahama, “Environmental application of electrical discharge for ozone treatment of soil,” Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, vol. 5, no. 4, pp. 42-44, 2015, https://doi.org/10.5604 /20830157.1176573.
[5] Z. Lv, S. Rowland, S.Chen, H. Zheng, K.Wu, “Modelling of partial discharge characteristics in electrical tree channels: Estimating the PD inception and extinction voltages,” IEEE Transactions on Dielectrics and Electrical Insulation, no. 25, pp. 1999-2010, 2018. doi: 10.1109/TDEI.2018.007175.
[6] M. Szadkowski, “New method of analysis of partial discharges,” Przegląd Elektrotechniczny, vol. 90 no. 3, 103-106, 2014. doi: 10.12915/pe.2014.03.21
[7] Sh.A. Bahtaev, G.V.Bochkarjova, G.I. Bokova, “Sposob kontrolja diametra mikroprovoloki,” Republic of Kazakhstan Patent no. 5070, Ofic.bjull., Prom.sobstv., no. 10, 1998.
[8] Sh.A.Bahtaev, G.D. Musapirova et al., “Ustrojstvo dlja izmerenija diametra mikroprovoloki,” Republic of Kazakhstan Patent no. 96543, Ofic.bjull., Prom.sobstv., no. 2, 30.01.2017.
[9] Predpatent RK №12038.Sposob izmerenija skorosti protjazhki mikroprovoloki // Bahtaev Sh.A. i dr.Opubl. Bjull.№9, 16.09.2002.
[10] G.V.Bochkareva, G.D.Musapirova, “The frequency characteristics of the differential conductivity of the corona in the high-frequency region,” in proc. The main problems of modern science: international materials. scientific-practical conf. - Bulgaria, pp. 92-94, 2010.
[11] Sh.A.Bakhtaev, G.V.Bochkareva, G.D. Musapirova, “Areas of existence of anomalies in the high-frequency conductivity of the positive corona,” Tomsk State University Journal. AIPP no. 2, pp. 18-23, 2010.

Go to article

Authors and Affiliations

Aliya S. Tergeussizova
1
Shabden A. Bakhtaev
2
Waldemar Wójcik
3
Bekmurza H. Aitchanov
4
Gulzada D. Mussapirova
2
Aynur Zh. Toygozhinova
5

  1. Kazakh National University named after al-Farabi, Almaty, Kazakhstan
  2. Almaty University of Power Engineering and Telecommunications, Almaty, Kazakhstan
  3. Lublin University of Technology, Lublin
  4. Suleyman Demirel University, Almaty, Kazakhstan
  5. Kazakh Academy of Transport and Communications named after M.Tynyshpayev, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Assessment of the state of a pulse power supply requires effective and accurate methods to measure and reconstruct the tracking error. This paper proposes a tracking error measurement method for a digital pulse power supply. A de-noising algorithm based on Empirical Mode Decomposition (EMD) is used to analyse the energy of each Intrinsic Mode Function (IMF) component, identify the turning point of energy, and reconstruct the signal to obtain the accurate tracking error. The effectiveness of this EMD method is demonstrated by simulation and actual measurement. Simulation was used to compare the performance of time domain filtering, wavelet threshold de-noising, and the EMD de-noising algorithm. In practical use, the feedback of current on the prototype of the power supply is sampled and analysed as experimental data.

Go to article

Authors and Affiliations

Rongkun Wang
Sigun Sun
Bingtao Hu
Download PDF Download RIS Download Bibtex

Abstract

We present the development of a technique for studying laser-induced magnetization dynamics, based on inductive measurement. The technique could provide a simple tool for studying laser-induced demagnetization in thin films and associated processes, such as Gilbert damping and magnetization precession. It was successfully tested using a nanosecond laser and NiZn ferrite samples and – after further development – it is expected to be useful for observation of ultra-fast demagnetization. The combination of optical excitation and inductive measurement enables to study laser-induced magnetization dynamics in both thin and several micrometre thick films and might be the key to a new principle of ultrafast broadband UV–IR pulse detection.

Go to article

Authors and Affiliations

Tomáš Ilit’
Pavol Valko
Milan Držík
Marianna Ušáková
Martin Šoka
Marian Marton
Miroslav Behúl
Marian Vojs
Download PDF Download RIS Download Bibtex

Abstract

Adjustable-width pulse signals are widely used in systems such as test equipment for hold time, response time and radar testing. In this study, we proposed a pulse generation method based on virtual sampling with ultra-high pulse width resolution. In the proposed method, the sampling rate of a digital-to-analogue converter (DAC) was adjusted to considerably improve pulse width resolution. First, the sampling rate was matched with the target pulse width resolution to digitally sample the ideal signal and generate digital waveform sampling points. Next, the signal bandwidth of the DAC was matched using a low-pass digital filter. Finally, the waveform sampling points were downsampled using an integer factor and output after digital-to-analogue conversion. The waveform pulse width information generated by high-frequency digital sampling was passed step by step and retained in the final output analogue signal. A DAC with a sampling rate of 1.25 GSa/s was used, and the pulse width resolution of the pulse signal was 0.1 ns. Theoretically, a sampling rate of 10 GSa/s is required to achieve 0.1 ns resolution. This method is simple, has a low cost, and exhibits excellent performance.
Go to article

Authors and Affiliations

Hanglin Liu
1
Zaiming Fu
1
Dexuan Kong
1
Houjun Wang
1
Yindong Xiao
1

  1. University of Electronic Science and Technology of China, School of Automation Engineering, Chengdu 611731, China
Download PDF Download RIS Download Bibtex

Abstract

Arriving at a good combination of coding and modulation schemes that can achieve good error correction constitutes a challenge in digital communication systems. In this work, we explore the combination of permutation coding (PC) and pulse amplitude modulation (PAM) for mitigating channel errors in the presence of background noise and jitter. Since PAM is characterised with bi-polar constellations, Euclidean distance is a good choice for predicting the performance of such coded modulation setup. In order to address certain challenges facing PCs, we therefore introduce injections in the coding system, together with a modified form of PAM system. This modification entails constraining the PAM constellations to the size of the codeword’s symbol. The results obtained demonstrate the strength of the modified coded PAM system over the conventional PC coded PAM system.

Go to article

Authors and Affiliations

Opeyemi O. Ogunyanda
Thokozani Shongwe
Theo G. Swart
Download PDF Download RIS Download Bibtex

Abstract

The present research is focused on the characterization of the composites from Al2O3-Cu-Ni system. Two methods of ceramic-metal composite forming were applied: uniaxial powder pressing and Pulse Plasma Sintering (PPS). To obtain the samples the powder mixtures containing 85 vol.% of Al2O3 and 15 vol.% of metal powders were used. Influence of the sintering process on microstructure and mechanical properties of the two series of the composites was analyzed in detail. The selected physical properties of samples were characterized by Archimedes immersion method. Vickers hardness and the fracture toughness of the composites was determined as well. The microstructure of the composites was characterized by XRD, SEM, EDX. Fractography investigation was carried out as well. Independently on composite production method Al2O3, Cu, Ni, and CuNi phases were revealed. Fractography investigation results revealed different character of fracture in dependence of fabrication method. Pulse Plasma Sintered samples were characterized by higher crack resistance and higher Vickers hardness in comparison to the specimens manufactured by uniaxial pressing.

Go to article

Authors and Affiliations

J. Zygmuntowicz
M. Wachowski
ORCID: ORCID
P. Piotrkiewicz
W. Kaszuwara
Download PDF Download RIS Download Bibtex

Abstract

Nitrogen-doped DLC (diamond-like carbon) coatings were produced on 316L nitrided austenitic steel in direct current and pulsed glow discharge conditions. The chemical composition, surface topography, hardness and corrosion resistance of the obtained carbon coatings were examined. The coatings varied in surface morphology, roughness and hardness. Direct current glow discharge made it possible to produce a coating characterized by lower hardness, greater thickness and higher nitrogen content. The coating featured improved corrosion resistance and adhesion compared to coatings produced in the pulsed process.

Go to article

Authors and Affiliations

T. Borowski
ORCID: ORCID
M. Spychalski
ORCID: ORCID
K. Rożniatowski
ORCID: ORCID
K. Kulikowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

A principle diagram of a high-voltage low-power power supply for devices comprising a microchannel plate (MCP) has been developed. A mathematical model was built according to the developed scheme for a detailed study of the operation of the power supply and the selection of the optimal parameters of its components and obtaining the best output voltages. The power supply circuit comprises a control circuit, a pulse transformer, a voltage multiplier circuit, a feedback circuit, and an input stabilizer. The input stabilizer provides the maintenance of the voltage switched in the primary winding of the transformer at a given level regardless of the voltage drop of the power supply primary source. Moreover the stabilizer provides constant voltage maintenance when the load resistance changes. (with Rload changing from 100 to 200 MΩ, Uout did not exceed 3 V).
Go to article

Bibliography

[1]. Rosanna Rispoli, Elisabetta De Angelis, Luca Colasanti, Nello Vertolli, Stefano Orsini «ELENA microchannel plate detector: absolute detection efficiency for low energy neutral atoms», Optical Engineering, 2013.
[2]. O. Chassela A. Grigoreiv A. Fedorov N. André, «Resistance and gain of the microchannel plate (MCP) detector as a function of temperature», International Conference on Space Optics—ICSO, 2018.
[3]. J Upadhyay, H. R. Bundel, R. Chandra, J. A. Chakera, C.P. Navathe and P.D. Gupta, «A simple power supply and control unit for pulsed operation of a microchannel plate imaging detector», 1998.
[4]. Zhi Qiang, Yang Ye, Yan Bo, Li Jun-guo, Ni Xiao-bing, Wang Yu, Yao Ze, «The Cathode Control Circuit Design of Auto-Gating Power Supply for Low-Light-Level Image Intensifier», Science and Technology on Low-Light-Level Night Vision Laboratory, Xi’an, China, 2015.
[5]. Chengquan Peia, Jinshou Tianb, Zhen Liua, Hong Qinc, Shengli Wua, «A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes», 2017.
[6]. Cristian H. Belussi, Mariano Gómez Berisso, Yanina Fasano, «Low-noise High-voltage DC Power Supply for Nanopositioning Applications», 2014.
Go to article

Authors and Affiliations

Boris Martemianov
1
Alexander Ryzhkov
1
Grigoriy Vdovin
1

  1. Limited Liability Company Vladikavkaz Technological Center "BASPIK", North Osetia
Download PDF Download RIS Download Bibtex

Abstract

Sub-bottom profiler (SBP) is an acoustic instrument commonly used to survey underwater shallow geological structure and embedded objects whose most important performance parameter is the actual vertical resolution. This paper presented a methodology to measure and evaluate the actual vertical resolution of SBP based on an experiment in an anechoic tank, which was divided into three components: building of artificial geological model, measurement of acoustic parameters, and determination of actual vertical resolution of the acoustic profiles. First, the wedge-shaped geological model, whose thickness could be accurately controlled, was designed and built in an anechoic tank to try to directly measure the vertical resolution of SBP. Then, the acoustic pulse width of SBP was measured to calculate the theoretical general vertical resolution and extreme vertical resolution. Finally, based on the acoustic profiles obtained in the experiment, the method which was used to evaluate the actual vertical resolution by measuring the duration of reflection event was put forward. Due to comparing measurement data of different parameter settings of the SBP, the study has revealed that the SBP had the lowest resolution in the 4 kHz–500 µs setting, which was 226.5 µs, or 36.2 cm, and the highest resolution in the 15 kHz–67 µs setting, which was 72.7 µs, or 11.6 cm. The vertical resolution decreased with the increase of the pulse width. The results also showed that the actual resolution was close to the theoretical general resolution and far from the extreme resolution.

Go to article

Authors and Affiliations

Fangqi Wang
Lifeng Dong
Jisheng Ding
Xinghua Zhou
Changfei Tao
Xubo Lin
Guanhui Liang
Download PDF Download RIS Download Bibtex

Abstract

Liquid Phase Exfoliation (LPE) is a common route to produce two-dimensional MoS2 nanosheets. In this research, MoS2 powder is exfoliated by an ultrasonic probe (sonicator) in a water-ethanol solution. It is reported that MoS2 as a prototype 2D Transition Metal Dichalcogenide, has a band gap that increases with a decreasing number of layers. There are some factors that affect the average band gap energy value and the thickness of the exfoliated flakes. We varied different parameters of the ultrasonic probe like power, pulse percentage and time duration of sonication to investigate the effects on the number of MoS2 layers. Our findings from the UV-Visible spectra, SEM, FESEM and TEM images indicate that the minimum thickness for these samples was acquired at 50% of the input power of the sonicator we used (65 W) and the optimum pulse percentage is 50%. The current study also found that the average amount of band gap increased with an increase in sonication time, and then remained unchanged after 60 minutes.
Go to article

Authors and Affiliations

Najme Sadat Taghavi
1
Reza Afzalzadeh
1

  1. Faculty of Physics K.N. Toosi University of Technology Tehran 15418-49611, Iran
Download PDF Download RIS Download Bibtex

Abstract

Objectives: In the article we describe the new, high frequency, 20 MHz scanning/Doppler probe designed to measure the flow mediated dilation (FMD) and shear rate (SR) close to the radial artery wall.

Methods: We compare two US scanning systems, standard vascular modality working below 12 MHz and high frequency 20 MHz system designed for FMD and SR measurements. Axial resolutions of both systems were compared by imaging of two closely spaced food plastic foils immersed in water and by measuring systolic/diastolic diameter changes in the radial artery. The sensitivities of Doppler modalities were also determined. The diagnostic potential of a high frequency system in measurements of FMD and SR was studied in vivo, in two groups of subjects, 12 healthy volunteers and 14 patients with stable coronary artery disease (CAD).

Results: Over three times better axial resolution was demonstrated for a high frequency system. Also, the sensitivity of the external single transducer 20 MHz pulse Doppler proved to be over 20 dB better (in terms of a signal-to-noise ratio) than the pulse Doppler incorporated into the linear array. Statistically significant differences in FMD and FMD/SR values for healthy volunteers and CAD patients were confirmed, p-values < 0:05. The areas under Receiver Operating Characteristic (ROC) curves for FMD and FMD/SR for the prediction CAD had the values of 0.99 and 0.97, respectively.

Conclusions: These results justify the usefulness of the designed high-frequency scanning system to determine the FMD and SR in the radial artery as predictors of coronary arterial disease.

Go to article

Authors and Affiliations

Andrzej Nowicki
Barbara Gambin
ORCID: ORCID
Wojciech Secomski
Zbigniew Trawiński
Michał Szubielski
Ryszard Tymkiewicz
Robert Olszewski
Download PDF Download RIS Download Bibtex

Abstract

On the basis of a unipolar corona discharge, a method of non-contact and continuous measurement of linear parameters of thin and ultra-thin dielectric fibres and optical fibres (10 to 125 microns) in the process of their manufacture was developed. The measurement method differs from the commonly known methods by high accuracy and reliability of measurement and resistance to changes in the electrical characteristics of the discharge gap and the state of ambient air.
Go to article

Authors and Affiliations

Aliya S. Tergeussizova
1
Shabden A. Bakhtaev
2
Waldemar Wojcik
3
Ryszard Romaniuk
4
Bekmurza H. Aitchanov
5
Gulzada D. Mussapirova
2
Aynur Zh. Toygozhinova
6

  1. Kazakh National University named after al-Farabi, Almaty, Kazakhstan
  2. Almaty University of Power Engineering and Telecommunications, Almaty, Kazakhstan
  3. Lublin Technical University, Poland
  4. Warsaw University of Technology, Poland
  5. Suleyman Demirel University, Almaty, Kazakhstan
  6. Kazakh Academy of Transport and Communications named after M.Tynyshpayev, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

This paper presents exemplary exercise on the fundamentals of signal processing course which is offered for second year bachelor level students. Application of Field Programmable Analog Array (FPAA) for pulse amplitude modulation (PAM) exercise is described with signal processing laboratory. There are presented two methods for implementing PAM modulation and demodulation technique in FPAA module. Example configuration files are available form Authors’ web site.

Go to article

Authors and Affiliations

Damian Grzechca
Lukas Chruszczyk
Download PDF Download RIS Download Bibtex

Abstract

The ergodic channel capacity of wireless optical multiple-input multiple-output (MIMO) system with pulse position modulation (PPM) is investigated. The combined effects of atmospheric turbulence, atmospheric attenuation, pointing error and channel spatial correlation are taken into consideration. The expression of ergodic channel capacity is derived, and is further performed by Wilkinson approximation method for simplicity. The simulation results indicated that the strong spatial correlation has the greatest influence on the ergodic channel capacity, followed by pointing errors and atmospheric turbulence. Moreover, the ergodic channel capacity growth brought by space diversity only performs well under independent and weakly correlated channels. Properly increasing the size and spacing of the receiving apertures is an effective means of effectively increasing the ergodic channel capacity.
Go to article

Bibliography

[1] N. Joshi and P. K. Sharma, “Performance of wireless optical communication in S-distributed turbulence,” IEEE Photonic Technology Letters, vol. 28, no. 2, pp. 151-154, Oct. 2016. DOI: 10.1109/LPT.2015.2487605
[2] J. Anshul, and M. R. Bhatnagar, “Free-space optical communication: a diversity-multiplexing trade-off perspective,” IEEE Transactions on Information Theory, vol. 65, no. 2, pp. 1113-1125, 2019. DOI: 10.1109/TIT.2018.2856116.
[3] P. Kaur, V. K. Jain, and S. Kar, “Performance analysis of free space optical links using multi-input multi-output and aperture averaging in presence of turbulence and various weather conditions,” Communications Iet, vol. 9, no. 8, pp. 1104-1109, May. 2015. DOI: 10.1049/iet-com.2014.0926
[4] Y. Zhang, H. Yu, J. Zhang, and Y. Zhu, “Space codes for MIMO optical wireless communications: Error performance criterion and code construction,” IEEE Transcation on Wireless Communication, vol. 16, no. 5, pp. 3072-3085, 2017. DOI: 10.1109/TWC.2017.2675398
[5] D. A. Luong, T. C. Thang, and A. T. Pham, “Average capacity of MIMO/FSO systems with equal gain combining over log-normal channels,” International Conference on Ubiquitous & Future Networks. IEEE, pp. 306-309, Jul. 2013. DOI: 10.1109/ICUFN.2013.6614831
[6] H. S. Khallaf, and H. M. H. Shalaby, “Closed form expressions for SER and capacity of shot noise limited MIMO-FSO system adopting MPPM over gamma-gamma atmospheric turbulence channels,” IEEE Photonics Conference, CA, USA, Oct. 2014, pp. 619-620. DOI: 10.1109/IPCon.2014.6995292
[7] L. Han and Y. You, “Performance of multiple input multiple output free space optical communication under atmospheric turbulence and atmospheric attenuation,” Chinese Journal of Lasers, vol. 43, no. 7, pp. 0706004, July 2016. DOI: 10.3788/CJL201643.0706004
[8] I. A. Alimi, A. M. Abdalla, J. Rodriguez, P. P. Monteiro, and A. L. Teixeira, “Spatial interpolated lookup tables (LUTs) models for ergodic capacity of MIMO FSO systems,” IEEE Photonics Technology Letters, vol. 29, no. 7, pp. 583-586, Apr. 2017. DOI: 10.1109/LPT.2017.2669337
[9] G. Yang, M. A. Khalighi, Z. Gassemlooy, and S. Bourennane, “Performance analysis of space-diversity free-space optical systems over the correlated Gamma-Gamma fading channel using Padé approximation method,” IET Communications, vol. 8, no. 13, pp. 2246- 2255, Sept. 2014. DOI: 10.1049/iet-com.2013.0962
[10] H. S. Khallaf, J. M. Garrido-Balsells, H. M. H. Shalaby, and Seiichi Sampei, “SER analysis of MPPM-Coded MIMO-FSO system over uncorrelated and correlated Gamma-Gamma atmospheric turbulence channels,” Optics Communications, vol. 356, pp. 530-535, Aug. 2015. DOI: 10.1016/j.optcom.2015.08.060 [11] M. Petkovic, J. Anastasov, G.T. Djordjevic, and P. Ivanis, “Impact of correlation on outage performance of FSO system with switch-and-stay diversity receiver,” 2015 IEEE International Conference on Communications (ICC), London, 2015, pp. 2756–2761, DOI: 10.1109/ICC.2015.7248743. [12] T. Ozbilgin, and M. Koca, “Inter-aperture correlation in MIMO free space optical systems,” Optics Communications, vol. 353, pp. 139–146, May. 2015. DOI: 10.1016/j.optcom.2015.05.025. [13] A. Garacia-Zambrana, B. Castillo-Vazquez, and C. Castillo-Vazquez, “Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors,” Optics Express, vol. 20, no. 3, pp. 2096-2109, Jan. 2012. DOI: 10.1364/OE.20.002096 [14] M. R. Bhatnagar, and Z. Ghssemlooy, “Performance analysis of Gamma–Gamma fading FSO MIMO links with pointing errors,” Journal of Lightwave Technology, vol. 34, no. 9, pp. 2158-2169, May 2016. DOI: 10.1109/JLT.2016.2526053 [15] I. E. Lee, Z. Ghassemlooy, W. P. Ng, M. A. Khalighi, and S. K. Liaw, “Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors,” Applied Optics, vol. 55, no. 1, pp. 1-9, Feb. 2016. DOI: 10.1364/AO.55.000001 [16] H. Zhang, H. Li, D. Xiao, and S. Ning, “Performance analysis of spatial-diversity reception over combined effects of atmospheric turbulence,” Chinese Journal of Lasers, vol. 43, no. 4, pp. 0405002, Apr. 2016. DOI: 10.3788/CJL201643.0405002 [17] C. Martin and B. Ottersten, “Asymptotic eigenvalue distributions and capacity for MIMO channels under correlated fading,” IEEE Transcations on Wireless Communications, vol. 3, no. 4, pp. 1350-1359, Aug. 2004. DOI: 10.1109/TWC.2004.830856 [18] H. Moradi, M. Falahpour, H.Refai, and P. Lopresti, “BER analysis of optical wireless signals through lognormal fading channels with perfect CSI,” IEEE 17th International Conference on Telecommunications (ICT ‘10), Doha, pp. 493-497, 2010. DOI: 10.1109/ICTEL.2010.5478870 [19] S. L. Loyka, “Channel capacity of MIMO architecture using the exponential correlation matrix,” IEEE Communications Letters, vol. 5, no. 9, pp. 369-371, Oct. 2001. DOI: 10.1109/4234.951380
Go to article

Authors and Affiliations

Minghua Cao
1
Yue Zhang
1
Zhongjiang Kang
1
Huiqin Wang
1

  1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China

This page uses 'cookies'. Learn more