Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A new configuration of rectifier suiting CMOS technology is presented. The rectifier consists of only two n-channel MOS transistors, two capacitors and two resistors; for this reason it is very favourable in manufacturing in CMOS technology. With these features the rectifier is easy to design and cheap in production. Despite its simplicity, the rectifier has relatively good characteristics, the voltage and power efficiency, and bandwidth greater than 89%, 87%, and 1 GHz, respectively. The performed simulations and measurements of a prototype circuit fully confirmed its correct operation and advantages.

Go to article

Authors and Affiliations

Waldemar Jendernalik
Jacek Jakusz
Grzegorz Blakiewicz
Miron Kłosowski
Download PDF Download RIS Download Bibtex

Abstract

A lot of methods for sensorless drive control have been published last years for synchronous and asynchronous machines. One of the approaches uses high frequency carrier injection for position control. The injected high frequency signal is controlled to remain in alignment with the saliency produced by the saturation of the main flux. Due to the fact that it does not use the fundamental machine model which fails at standstill of the magnetic field it is possible to control the drive even at zero speed. In spite of this obvious advantage industry does not apply sensorless control in their products. This is due to the dependency of many published methods on physical parameters of the machine. The high frequency carrier injection method, presented in this paper, does not need to have exact machine parameters and it can be used for machines where there is only a very small rotor anisotropy like in Surface Mounted Permanent Magnet Synchronous Machines (SMPMSM) [1]. Standard drives usually are supplied by a 6-pulse diode rectifier. Due to new European directives concerning the harmonic content in the mains it is expected that the use of controlled pulse-width modulated PWM rectifiers will be enforced in the future [2]. An important advantage of this type of rectifiers is the regeneration of the energy back to the grid. Another benefit are low harmonics in comparison to diode rectifiers. Using one of many control methods published so far it is also possible to achieve almost unity power factor. However, in these methods voltage sensors are necessary to synchronize PWM rectifiers with the mains. Therefore they are not very popular in the industry with respect to the cost and the lack of reliability. Recently a control method was proposed which is based on a tracking scheme. It does not need any voltage sensor on the ac-side of the rectifier and it does not need to know accurate parameters of the system. This paper presents the control solution for a cheap, industry friendly (no additional hardware and installation effort) drive system. The phase tracking method for control of electrical drive and PWM rectifier is described. Encouraging experimental results are shown.

Go to article

Authors and Affiliations

R. Kennel
O.C. Ferreira
P. Szczupak
Download PDF Download RIS Download Bibtex

Abstract

To improve the power quality of a multi-pulse rectifier, a zigzag 18-pulse uncontrolled rectifier with an auxiliary circuit at the DC side is proposed. When the grid-side currents are sinusoidal waves, the required DC side injection currents to be compensated can be obtained by analyzing the AC-DC side relationship of diode bridge rectifiers. Then the 6 compensation currents generated by an active auxiliary circuit are injected into the DC side to eliminate the grid-side harmonics of the rectifier. The simulation results verifying the correctness of the theoretical analysis show that the proposed rectifier can mitigate the harmonic content, as the total harmonic distortion of the grid-side current is about 1.45%. In addition, the single-phase inverter used in the active auxiliary circuit has the characters of simple circuit structure and easy controllability.

Go to article

Authors and Affiliations

Jiongde Liu
Xiaoqiang Chen
Ying Wang
ORCID: ORCID
Tao Chen
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a low kilo-volt-ampere rating zigzag connected autotransformer based 36-pulse rectifier system supplying vector controlled induction motor drives (VCIMD) is designed, modeled and simulated. Detailed design procedure and magnetic rating calculation of the proposed autotransformer and interphase reactor is studied. Moreover, the design process of the autotransformer is modified to make it suitable for retrofit applications. Simulation results confirm that the proposed 36-pulse rectifier system is able to suppress less than 35th harmonics in the utility line current. The influence of load variation and load character is also studied to demonstrate the performance and effectiveness of the proposed 36-pulse rectifiers. A set of power quality indices at AC mains and DC link are presented to compare the performance of 6-, 24- and 36-pulse AC-DC converters.
Go to article

Authors and Affiliations

Xiao-Qiang Chen
Chun-Ling Hao
Qiu Hao
Li Min
Download PDF Download RIS Download Bibtex

Abstract

The existence of inrush current poses a significant problem during the start-up process within three-phase voltage-source rectifiers. To address this problem, this study proposes a strategy to suppress the inrush current effectively based on the virtual-resistor- control method, while preventing the increase in cost of the system and complexity of the algorithm. First, a mathematical model is established based on the dq coordinate frame, and the primary cause of the inrush current is analyzed. Then, the design process of the virtual-resistor-control method is detailed. Finally, the accuracy and effectiveness of the proposed method are verified by simulations and experiments. The results show that the inrush current can be more than two times the rated current before the addition of the virtual resistor. The start-up process can be realized without the inrush current after the addition of the virtual resistor, it does not need to increase hardware costs, there is no secondary inrush current, and the sensitivity of the parameters and the complexity of control are low.

Go to article

Authors and Affiliations

Kaizhong He
Hongsheng Su
Download PDF Download RIS Download Bibtex

Abstract

The Small Hydro Power Plants allow to increase the energy amount from renewable sources, especially from small rivers in mountainous areas. This paper presents a new concept of a energy conversion system for application in a Small Hydropower Plant (SHP) which is based on a permanent magnet generator (PM generator) with a propeller turbine integrated with the generator rotor. The PM generator can work at a variable speed and therefore energy produced by the PM generator has to be converted by means of a power electronic unit to fit to the three-phase power grid parameters. For this concept, dimensions and parameters of the PM generator were specially designed on account of integration with water turbine. The paper precisely describes elements of energy conversion system and also presents the results of numerical tests for chosen working conditions. An original algorithm of control strategy for power electronic unit was used to adjust generated energy to the required parameters of the three-phase grid.
Go to article

Authors and Affiliations

Tadeusz Sobczyk
Tomasz Węgiel
Witold Mazgaj
Zbigniew Szular
Download PDF Download RIS Download Bibtex

Abstract

In the paper an algorithm and computer code for the identification of the hysteresis parameters of the Jiles-Atherton model have been presented. For the identification the particle swarm optimization method (PSO) has been applied. In the optimization procedure five design variables has been assumed. The computer code has been elaborated using Delphi environment. Three types of material have been examined. The results of optimization have been compared to experimental ones. Selected results of the calculation for different material are presented and discussed. A novel vector operated one-cycle control matrix rectifier (OCC-MR) is proposed in this paper. Matrix rectifier (MR) is a generalized buck three-phase AC-DC converter with four-quadrant operation capability. MR can also be the front-stage circuit of AC-DC-AC equivalent structure of MC. One-cycle control (OCC) is a nonlinear control technique, which integrates modulation algorithm and control strategy. By applying OCC to current control loop, the OCC-MR achieves balance only in a switching cycle,and realizes unitary input power factor. Furthermore, vector operation of OCC results In minimum switching losses. In order to make up for the insufficiency of OCC on load disturbance suppression, a PID controller is added onto output voltage control to improve load regulation. The OCC-MR features great simplicity, fast dynamic response and good immunity on input disturbance. On the basis of theoretical analysis, a systematic simulation of OCC-MR is implemented by means of Matlab/Simulink. Both static state performance and dynamic state performance of OCC-MR are discussed deeply. The simulation results have proved theoretical analysis of the vector operation of OCC-MR, and the control effects are satisfactory.

Go to article

Authors and Affiliations

Xinghua Yang
Jianguo Jiang
Xijun Yang
Download PDF Download RIS Download Bibtex

Abstract

Afault diagnosis method for the rotating rectifier of a brushless three-phase synchronous aerospace generator is proposed in this article. The proposed diagnostic system includes three steps: data acquisition, feature extraction and fault diagnosis. Based on a dynamic Fast Fourier Transform (FFT), this method processes the output voltages of aerospace generator continuously and monitors the continuous change trend of the main frequency in the spectrum before and after the fault. The trend can be used to perform fault diagnosis task. The fault features of the rotating rectifier proposed in this paper can quickly and effectively distinguish single and double faulty diodes. In order to verify the proposed diagnosis system, simulation and practical experiments are carried out in this paper, and good results can be achieved.
Go to article

Authors and Affiliations

Sai Feng
1
Jiang Cui
1
Zhuoran Zhang
1

  1. Nanjing University of Aeronautics and Astronautics, College of Automation Engineering, Nanjing City, Jiangsu Province, 211100, China
Download PDF Download RIS Download Bibtex

Abstract

The uncontrolled rectifier and controlled rectifier which use fixed switching frequency control strategy are applied usually during the working of a high-power high- speed permanent magnet generator (HSPMG). Even for the controlled rectifier, it will generate harmonics. The electromagnetic performance of the HSPMG is also affected by these harmonics. In this paper, the influences of the fixed switching frequency control strategy on a HSPMG were studied. Based on the Fourier theory, the harmonic currents of the generator were analyzed, and the change of harmonic distribution range and current total harmonic distortion (THD) were obtained. By using an indirect field-circuit coupling method, the influences of the fixed switching frequency control strategy on the losses and torque of the generator were analyzed. The relations between the switching frequency and the losses and torque of the generator were obtained, and the change mechanism of the loss was revealed. The obtained conclusions can provide reference for the optimized choice of the switching frequency of the distributed generation system with the HSPMG. It can also provide support for the HSPMG electromagnetic structural optimization and the optimization of the loss and harmonic on the system level.

Go to article

Authors and Affiliations

Qiu Hongbo
Wei Yanqi
Yang Cunxiang
Hu Kaiqiang
Download PDF Download RIS Download Bibtex

Abstract

The new topology of three-winding welding transformer is proposed. Each secondary winding is connected in parallel through the separate bridge rectifier to the welding arc. The main feature of the proposed device is parallel working of two secondary windings with different rated voltage. The advantage is nonlinear transformation ratio of current that provides unprecedented power efficiency. The self- and mutual leakage inductances, which are important in power conversion, are calculated by 2D FEA model. The operational current of the device is modelled numerically via P-Spice simulator. The proposed topology is up to 30% more power effective than conventional welding transformer provided that the leakage inductances of primary and secondary windings are correctly fitted. This transformer is used for manual arc welding.

Go to article

Authors and Affiliations

Lyudmila Sakhno
Olga Sakhno
Simon Dubitsky
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an improved Virtual Flux-based Direct Power Control (VF-DPC) applied for a three-phase pulse width modulation rectifier. The proposed control approach incorporates an enhanced Virtual Flux estimator made up of a cascade second-degree low-pass filter. This latter guarantees the attenuation of the highest harmonics. The introduced control concept presented in this paper has interesting features such as reducing the current harmonics distortion. In other words, it ensures that the input current drawn from the power supply is perfectly sinusoidal whatever the state of the network voltage. The proposed method also allows to maintain the DC side capacitor voltage at the required level and assure that the input current is in phase with the respective voltage to satisfy the unity power factor function. The results obtained from the numerical simulation have proved the effectiveness of the proposed method for disturbed grid voltage and system parameters variation.

Go to article

Authors and Affiliations

Zakaria El Zaïr Laggoun
Hocine Benalla
Khalil Nebti
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a concept of a control system for a high-frequency three-phase PWM grid-tied converter (3x400 V / 50 Hz) that performs functions of a 10-kW DC power supply with voltage range of 600÷800 V and of a reactive power compensator. Simulation tests (in PLECS) allowed proper selection of semiconductor switches between fast IGBTs and silicon carbide MOSFETs. As the main criterion minimum amount of power losses in semiconductor devices was adopted. Switching frequency of at least 40 kHz was used with the aim of minimizing size of passive filters (chokes, capacitors) both on the AC side and on the DC side. Simulation results have been confirmed in experimental studies of the PWM converter, the power factor of which (inductive and capacitive) could be regulated in range from 0.7 to 1.0 with THDi of line currents below 5% and energy efficiency of approximately 98.5%. The control system was implemented in Texas Instruments TMS320F28377S microcontroller.

Go to article

Authors and Affiliations

Roman Barlik
Piotr Grzejszczak
Bernard Leszczyński
Marek Szymczak
Download PDF Download RIS Download Bibtex

Abstract

Due to high performance demands of grid-connected pulse-width modulation (PWM) converters in power applications, backstepping control (BSC) has drawn wide research interest for its advantages, including high robustness against parametric variations and external disturbances. In order to guarantee these advantages while providing high static and dynamic responses, in this work, a robust BSC (RBSC) with consideration of grid-connected PWM converter parameter uncertainties is proposed for three-phase grid-connected four-leg voltage source rectifiers (GC-FLVSR). The proposed RBSC for GC-FLVSR is composed of four independent controllers based on the Lyabonov theory that control DC bus voltage and input currents simultaneously. As a result, unit power factor, stable DC-bus voltage, sinusoidal four-leg rectifier input currents with lower harmonics and zero-sequence (ZS), and natural currents can be accurately achieved. Furthermore, the stability and robustness against load, DC capacitor, and filter inductance variations can be tested. The effectiveness and superiority of the proposed RBSC compared to the PI control (PIC) have been validated by processor-inthe- loop (PIL) co-simulation using the STM32F407 discovery-development-board as an experimental study.
Go to article

Authors and Affiliations

Ali Chebabhi
1
Abdelhalim Kessal
2

  1. Electrical Engineering Laboratory (EEL), Faculty of Technology, University of M’sila, M’sila 28000, Algeria
  2. LPMRN Laboratory, Faculty of Sciences and Technology, University of Bordj Bou Arreridj, 34000, Algeria

This page uses 'cookies'. Learn more