Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Studies of electrical properties, including noise properties, of thick-film resistors prepared from various resistive and conductive materials on LTCC substrates have been described. Experiments have been carried out in the temperature range from 300 K up to 650 K using two methods, i.e. measuring (i) spectra of voltage fluctuations observed on the studied samples and (ii) the current noise index by a standard meter, both at constant temperature and during a temperature sweep with a slow rate. The 1/f noise component caused by resistance fluctuations occurred to be dominant in the entire range of temperature. The dependence of the noise intensity on temperature revealed that a temperature change from 300 K to 650 K causes a rise in magnitude of the noise intensity approximately one order of magnitude. Using the experimental data, the parameters describing noise properties of the used materials have been calculated and compared to the properties of other previously studied thick-film materials.

Go to article

Authors and Affiliations

Adam Witold Stadler
Zbigniew Zawiślak
Andrzej Dziedzic
Damian Nowak
Download PDF Download RIS Download Bibtex

Abstract

This paper concerns measurements and calculations of low frequency noise for semiconductor layers with four-probe electrodes. The measurements setup for the voltage noise cross-correlation method is described. The gain calculations for local resistance noise are performed to evaluate the contribution to total noise from different areas of the layer. It was shown, through numerical calculations and noise measurements, that in four-point probe specimens, with separated current and voltage terminals, the non-resistance noise of the contact and the resistance noise of the layer can be identified. The four-point probe method is used to find the low frequency resistance noise of the GaSb layer with a different doping type. For n-type and p-type GaSb layers with low carrier concentrations, the measured noise is dominated by the non-resistance noise contributions from contacts. Low frequency resistance noise was identified in high-doped GaSb layers (both types). At room temperature, such resistance noise in an n-type GaSb layer is significantly larger than for p-type GaSb with comparable doping concentration.

Go to article

Authors and Affiliations

L. Ciura
A. Kolek
D. Smoczyński
A. Jasik

This page uses 'cookies'. Learn more